108 research outputs found

    Statistical Properties of Strain and Rotation Tensors in Geodetic Network

    Get PDF
    This article deals with the characteristics of deformation of a body or a figure represented by discrete points of geodetic network. In each point of geodetic network kinematic quantities are considered normal strain, shear strain, and rotation. They are computed from strain and rotation tensors represented by displacement gradient matrix on the basis of known point displacement vector. Deformation analysis requires the appropriate treatment of kinematic quantities. Thus statistical properties of each quantity in a single point of geodetic network have to be known. Empirical results have shown that statistical properties are strongly related to the orientation in single point and local geometry of the geodetic network. Based on the known probability distribution of kinematic quantities the confidence areas for each quantity in a certain point can be defined. Based on this we can carry out appropriate statistical testing and decide whether the deformation of network in each point is statistically significant or not. On the other hand, we are able to ascertain the quality of the geometry of the geodetic network. The known characteristics of the probability distributions of two strain parameters and rotation in each point can serve as useful tools in the procedures of optimizing the geometry of the geodetic networks

    Dephasing representation of quantum fidelity for general pure and mixed states

    Get PDF
    General semiclassical expression for quantum fidelity (Loschmidt echo) of arbitrary pure and mixed states is derived. It expresses fidelity as an interference sum of dephasing trajectories weighed by the Wigner function of the initial state, and does not require that the initial state be localized in position or momentum. This general dephasing representation is special in that, counterintuitively, all of fidelity decay is due to dephasing and none due to the decay of classical overlaps. Surprising accuracy of the approximation is justified by invoking the shadowing theorem: twice--both for physical perturbations and for numerical errors. It is shown how the general expression reduces to the special forms for position and momentum states and for wave packets localized in position or momentum. The superiority of the general over the specialized forms is explained and supported by numerical tests for wave packets, non-local pure states, and for simple and random mixed states. The tests are done in non-universal regimes in mixed phase space where detailed features of fidelity are important. Although semiclassically motivated, present approach is valid for abstract systems with a finite Hilbert basis provided that the discrete Wigner transform is used. This makes the method applicable, via a phase space approach, e. g., to problems of quantum computation.Comment: 11 pages, 4 figure

    A Synthetic Earth Gravity Model Designed Specifically for Testing Regional Gravimetric Geoid Determination Algorithms

    Get PDF
    A synthetic [simulated] Earth gravity model (SEGM) of the geoid, gravity and topography has been constructed over Australia specifically for validating regional gravimetric geoid determination theories, techniques and computer software. This regional high-resolution (1-arc-min by 1-arc-min) Australian SEGM (AusSEGM) is a combined source and effect model. The long-wavelength effect part (up to and including spherical harmonic degree and order 360) is taken from an assumed errorless EGM96 global geopotential model. Using forward modelling via numerical Newtonian integration, the short-wavelength source part is computed from a high-resolution (3-arc-sec by 3-arc-sec) synthetic digital elevation model (SDEM), which is a fractal surface based on the GLOBE v1 DEM. All topographic masses are modelled with a constant mass-density of 2,670 kg/m3. Based on these input data, gravity values on the synthetic topography (on a grid and at arbitrarily distributed discrete points) and consistent geoidal heights at regular 1-arc-min geographical grid nodes have been computed. The precision of the synthetic gravity and geoid data (after a first iteration) is estimated to be better than 30 μ Gal and 3 mm, respectively, which reduces to 1 μ Gal and 1 mm after a second iteration.The second iteration accounts for the changes in the geoid due to the superposed synthetic topographic mass distribution. The first iteration of AusSEGM is compared with Australian gravity and GPS-levelling data to verify that it gives a realistic representation of the Earth’s gravity field. As a by-product of this comparison, AusSEGM gives further evidence of the north–south-trending error in the Australian Height Datum. The freely available AusSEGM-derived gravity and SDEM data, included as Electronic Supplementary Material (ESM) with this paper, can be used to compute a geoid model that, if correct, will agree to in 3 mm with the AusSEGM geoidal heights, thus offering independent verification of theories and numerical techniques used for regional geoid modelling

    Testing Stokes-Helmert geoid model computation on a synthetic gravity field: experiences and shortcomings

    Get PDF
    We report on testing the UNB (University of New Brunswick) software suite for accurate regional geoid model determination by use of Stokes-Helmert’s method against an Australian Synthetic Field (ASF) as “ground truth”. This testing has taken several years and has led to discoveries of several significant errors (larger than 5mm in the resulting geoid models) both in the UNB software as well as the ASF. It was our hope that, after correcting the errors in UNB software, we would be able to come up with some definite numbers as far as the achievable accuracy for a geoid model computed by the UNB software. Unfortunately, it turned out that the ASF contained errors, some of as yet unknown origin, that will have to be removed before that ultimate goal can be reached. Regardless, the testing has taught us some valuable lessons, which we describe in this paper. As matters stand now, it seems that given errorless gravity data on 1’ by 1’ grid, a digital elevation model of a reasonable accuracy and no topographical density variations, the Stokes-Helmert approach as realised in the UNB software suite is capable of delivering an accuracy of the geoid model of no constant bias, standard deviation of about 25 mm and a maximum range of about 200 mm. We note that the UNB software suite does not use any corrective measures, such as biases and tilts or surface fitting, so the resulting errors reflect only the errors in modelling the geoid

    Ellipsoidal area mean gravity anomalies - precise computation of gravity anomaly reference fields for remove-compute-restore geoid determination

    Get PDF
    Gravity anomaly reference fields, required e.g. in remove-compute-restore (RCR) geoid computation, are obtained from global geopotential models (GGM) through harmonic synthesis. Usually, the gravity anomalies are computed as point values or area mean values in spherical approximation, or point values in ellipsoidal approximation. The present study proposes a method for computation of area mean gravity anomalies in ellipsoidal approximation ('ellipsoidal area means') by applying a simple ellipsoidal correction to area means in spherical approximation. Ellipsoidal area means offer better consistency with GGM quasi/geoid heights. The method is numerically validated with ellipsoidal area mean gravity derived from very fine grids of gravity point values in ellipsoidal approximation. Signal strengths of (i) the ellipsoidal effect (i.e., difference ellipsoidal vs. spherical approximation), (ii) the area mean effect (i.e., difference area mean vs. point gravity) and (iii) the ellipsoidal area mean effect (i.e., differences between ellipsoidal area means and point gravity in spherical approximation) are investigated in test areas in New Zealand and the Himalaya mountains. The impact of both the area mean and the ellipsoidal effect on quasigeoid heights is in the order of several centimetres. The proposed new gravity data type not only allows more accurate RCR-based geoid computation, but may also be of some value for the GGM validation using terrestrial gravity anomalies that are available as area mean values

    A new class of semiclassical wave function uniformizations

    Get PDF
    We present a new semiclassical technique which relies on replacing complicated classical manifold structure with simpler manifolds, which are then evaluated by the usual semiclassical rules. Under circumstances where the original manifold structure gives poor or useless results semiclassically the replacement manifolds can yield remarkable accuracy. We give several working examples to illustrate the theory presented here.Comment: 12 pages (incl. 12 figures

    Unification of New Zealand's local vertical datums: iterative gravimetric quasigeoid computations

    Get PDF
    New Zealand uses 13 separate local vertical datums (LVDs) based on normal-orthometric-corrected precise geodetic levelling from 12 different tide-gauges. We describe their unification using a regional gravimetric quasigeoid model and GPS-levelling data on each LVD. A novel application of iterative quasigeoid computation is used, where the LVD offsets computed from earlier models are used to apply additional gravity reductions from each LVD to that model. The solution converges after only three iterations yielding LVD offsets ranging from 0.24 m to 0.58 m with an average standard deviation of 0.08 m. The so-computed LVD offsets agree, within expected data errors, with geodetically levelled height differences at common benchmarks between adjacent LVDs. This shows that iterated quasigeoid models do have a role in vertical datum unification

    Mutual Validation of GNSS Height Measurements and High-precision Geometric-astronomical Leveling

    Get PDF
    The method of geometric-astronomical leveling is presented as a suited technique for the validation of GNSS (Global Navigation Satellite System) heights. In geometric-astronomical leveling, the ellipsoidal height differences are obtained by combining conventional spirit leveling and astronomical leveling. Astronomical leveling with recently developed digital zenith camera systems is capable of providing the geometry of equipotential surfaces of the gravity field accurate to a few 0.1 mm per km. This is comparable to the accuracy of spirit leveling. Consequently, geometric-astronomical leveling yields accurate ellipsoidal height differences that may serve as an independent check on GNSS height measurements at local scales. A test was performed in a local geodetic network near Hanover. GPS observations were simultaneously carried out at five stations over a time span of 48 h and processed considering state-of-the-art techniques and sophisticated new approaches to reduce station-dependent errors. The comparison of GPS height differences with those from geometric-astronomical leveling shows a promising agreement of some millimeters. The experiment indicates the currently achievable accuracy level of GPS height measurements and demonstrates the practical applicability of the proposed approach for the validation of GNSS height measurements as well as the evaluation of GNSS height processing strategies

    DESIGN OF GEODETIC NETWORKS BASED ON OUTLIER IDENTIFICATION CRITERIA: AN EXAMPLE APPLIED TO THE LEVELING NETWORK

    Get PDF
    We present a numerical simulation method for designing geodetic networks. The quality criterion considered is based on the power of the test of data snooping testing procedure. This criterion expresses the probability of the data snooping to identify correctly an outlier. In general, the power of the test is defined theoretically. However, with the advent of the fast computers and large data storage systems, it can be estimated using numerical simulation. Here, the number of experiments in which the data snooping procedure identifies the outlier correctly is counted using Monte Carlos simulations. If the network configuration does not meet the reliability criterion at some part, then it can be improved by adding required observation to the surveying plan. The method does not use real observations. Thus, it depends on the geometrical configuration of the network; the uncertainty of the observations; and the size of outlier. The proposed method is demonstrated by practical application of one simulated leveling network. Results showed the needs of five additional observations between adjacent stations. The addition of these new observations improved the internal reliability of approximately 18%. Therefore, the final designed network must be able to identify and resist against the undetectable outliers – according to the probability levels
    corecore