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A general semiclassical expression for quantum fidelity �Loschmidt echo� of arbitrary pure and mixed states
is derived. It expresses fidelity as an interference sum of dephasing trajectories weighed by the Wigner function
of the initial state, and does not require that the initial state be localized in position or momentum. This general
dephasing representation is special in that, counterintuitively, all of fidelity decay is due to dephasing and none
is due to the decay of classical overlaps. Surprising accuracy of the approximation is justified by invoking the
shadowing theorem: twice—both for physical perturbations and for numerical errors. Beyond justifying the
approximation, the shadowing theorem makes the dephasing representation practical: without shadowing it
would be impossible to find numerically the precise trajectories needed in a semiclassical approximation. It is
shown how the general expression reduces to the previously known special forms for localized states. The
superiority of the general over the specialized forms is explained and supported by numerical tests for wave
packets, nonlocal pure states, and for simple and random mixed states. The tests are done in nonuniversal
regimes in mixed phase space where detailed features of fidelity are important. Although semiclassically
motivated, the present approach is valid for abstract systems with a finite Hilbert basis provided that the
discrete Wigner transform is used. This makes the method applicable, via a phase-space approach, to problems
of quantum computation.
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I. INTRODUCTION

Time evolution in classical mechanics is very sensitive to
perturbations of both initial conditions of a trajectory and the
Hamiltonian. Because of the unitarity of quantum evolution,
on the other hand, the overlap of two different quantum
states remains constant in time. However, we can still define
sensitivity of quantum evolution to perturbations of the
Hamiltonian. This is usually done using the notion of quan-
tum fidelity �sometimes called Loschmidt echo�, defined for
pure states as �1�

M�t� = �O�t��2, �1�

O�t� = ���e+iH�t/�e−iH0t/���� , �2�

where O�t� is the fidelity amplitude, ��� is the initial state,
and H0 and H�=H0+�V are the unperturbed and perturbed
Hamiltonians, respectively. In words, fidelity is the squared
overlap at time t of two identical initial states evolved with
two slightly different Hamiltonians. Because of its relevance
in theories of decoherence and in experimental realizations
of quantum computation �2�, quantum as well as classical
fidelity has been extensively studied in the last few years; for
a partial review, see Ref. �3�. One of the main results of the
intensive study of fidelity is the identification of various uni-
versal regimes of fidelity decay in different limiting cases
�4–16�. The connection between fidelity decay and decoher-
ence is discussed in Refs. �17–19�. Several experiments that
measure fidelity �or fidelity amplitude� also exist �20–22�.

Many of the theoretical works used a semiclassical �SC�
approach, but before Ref. �23� only as a starting point for
various approximations, because of difficulties in treating an
exponentially growing number of terms in the general SC
expression for fidelity, especially in chaotic systems. This
problem was solved in Ref. �23� by a uniform expression for
fidelity amplitude which implicitly summed over all these
contributions using an integral over initial conditions, similar
in spirit to Miller’s initial value representation �24,25�. This
surprisingly simple and accurate expression, although limited
to wave packets localized in position, has been successfully
applied as a starting point to derive fidelity decay in the deep
Lyapunov regime �26� and the plateau of fidelity in neutron
scattering �16�.

In a recent paper �27�, the uniform expression for fidelity
was justified by the shadowing theorem of classical mechan-
ics �28,29� and a more general and, in fact, always more
accurate expression,

ODR�t� =� dr0� dp0�W�r0,p0�exp�− i�St
��r0,p0�/ � � ,

�3�

valid for arbitrary pure states, was stated. In this dephasing
representation �DR�, fidelity amplitude is expressed as an
interference integral over “dephasing trajectories” with initial
conditions r0 ,p0 and weighed by the Wigner function �W of
the initial state. The phase is given by the integral �St

�=
−�	0

t d�V�r� ,�� of the perturbation along the unperturbed tra-
jectory. One purpose of the present paper is to provide �in
Sec. II� a detailed derivation of this general DR for arbitrary
pure, i.e., also nonlocal states. The DR is derived by apply-
ing the shadowing theorem to approximate the stationary-*Electronic address: vanicek@post.harvard.edu
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phase points of a more general uniform SC expression. Shad-
owing is central to the DR for two main reasons: the
shadowing theorem justifies the approximation theoretically
as well as makes it practical numerically. Previously, the
shadowing theorem has most often been used to justify nu-
merical simulations of classical quantities in chaotic systems.
It does so by considering ensemble averages and guarantee-
ing the existence of an exact trajectory with a slightly dis-
placed initial condition that “shadows” a numerically noisy
trajectory. Dephasing representation offers a completely dif-
ferent and perhaps even more surprising application of the
theorem: shadowing is used to compute a quantum-
mechanical rather than a classical quantity. Moreover, the
theorem is applied primarily to physical rather than numeri-
cal perturbations.

In Sec. III it is shown that the same DR is valid also for
general mixed states. Section IV shows how the general ex-
pression reduces to the original form �23� and other special-
ized forms for position and momentum states or Gaussian
wave packets localized in position or momentum. In Sec. V,
the general DR is tested on a nonlocal state—a coherent
superposition of two position states—and on two types of
mixed state—an incoherent superposition of two position
states and a random mixture of pure states. It is also shown
that the general expression is superior to the original form
�23� even for a single Gaussian wave packet. All numerical
calculations are done for a system with a finite Hilbert basis.
In such systems, quantum phase space can be rigorously de-
fined if the original Wigner function �30� is replaced by the
discrete Wigner transform �31–33�. Since this discrete trans-
form can be defined in a general abstract Hilbert space with
finite basis, the present approach should be applicable to
problems of quantum computation if phase space approach is
used �34�. Numerical errors of the DR are analyzed in Sec.
VI. In Sec. VII, DR is compared to other “Wigner” methods.
The main conclusions of the paper are summarized in Sec.
VIII.

II. DEPHASING REPRESENTATION FOR A GENERAL
PURE STATE

Fidelity amplitude for a general pure state ��� is given by
Eq. �2�. In order to derive the general dephasing representa-
tion �3� of fidelity, we could start by replacing the two quan-
tum propagators in Eq. �2� by the corresponding SC Van
Vleck propagators �35�, as in Refs. �4,23,27�. However, we
will save some effort if we start directly from the SC initial
value representation �IVR� �24,25� for the Van Vleck propa-
gator,

e−iH�t/� 
 �2�i � �−d/2� dx0
���rt

��x0
��/�p0

��1/2eiSt
��x0

��/��rt
���r0

�� .

�4�

Here x= �r ,p� denotes the phase space point with position r
and momentum p, the subscript �t� is the time of propaga-
tion, and the superscript ��� is the value of the perturbation
used for propagation. E.g., x0

0 denotes the initial conditions
of trajectories of H0. Action St

� of a trajectory of the Hamil-
tonian H� is given by

St
��x0

�� = �
0

t

d��p�
� · ṙ�

� − H��x�
�;��� . �5�

In the simplified notation above, the square roots of the de-
terminants in Eq. �4� also include the appropriate Maslov
indices �36�. Using the IVR expressions �4�, fidelity ampli-
tude �2� becomes

OIVR�t� = �2� � �−d� dx0
0� dx0

�� �rt
0

�p0
0�1/2� �rt

�

�p0
��1/2

���r0
��

	�rt
��rt

0��r0
0���ei�St

0−St
��/�. �6�

A. Uniform semiclassical expression for fidelity

If we further expand the overlap �rt
� �rt

0� in integral �6� as
an integral over a dummy momentum q,

�rt
��rt

0� = 
��rt� = �2� � �−d� dqeiq·�rt/�,

with �rt=rt
�−rt

0, we obtain a “full” uniform SC expression
for fidelity,

Ounif�t� = �2� � �−2d� dx0
0� dx0

� � dq� �rt
0

�p0
0�1/2� �rt

�

�p0
��1/2

	�*�r0
����r0

0� 	 exp�i�St
0 − St

� + q · �rt�/ � � . �7�

This integral is, formally, semiclassically “exact.” In particu-
lar, it is free of caustics, unlike, e.g., the Van Vleck propa-
gator. Also, it includes the “off-diagonal” terms that auto-
matically disappear in the dephasing representation �3�. In
this sense, expression �7� is the ultimate SC representation of
fidelity amplitude. Because Ounif is expressed only in terms
of initial conditions �and dummy momentum q�, it appears to
be ready for numerical evaluations. Unfortunately, this inte-
gral is highly oscillatory, and very difficult to compute, es-
pecially in many-dimensional or chaotic systems. Therefore
we will take an alternative route, using a further approxima-
tion, but obtain an integral �3� much easier to tackle numeri-
cally and which appears to give much better numerical re-
sults than Eq. �7�. Nevertheless, uniform expression �7�
deserves a more detailed examination in the future, in par-
ticular since it could shed light on the controversy surround-
ing the so-called diagonal approximation. This is, however,
beyond the scope of the present paper.

B. Dephasing representation

Before making any further approximations, let us perform
a change of variables �x0 ,x�→ �x ,�x in integral �6�. It
should be emphasized that we do not assume �x to be small.
New variables �averages and differences� are defined for all
times from 0 to t as

x =
1

2
�x0 + x�� , �8�

�x = x� − x0.

The Jacobian of this transformation is unity, so
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O�t� = �2� � �−d� dx0� d�x0� �rt
0

�p0
0�1/2� �rt

�

�p0
��1/2

	�*�r0
��
��rt���r0

0�exp� i

�
�St

0 − St
��� . �9�

While we do not intend to evaluate this integral fully by
the stationary phase �SP� approximation, it is instructive to
check where the action difference St

0−St
� is stationary be-

cause those regions give the main contributions to the inte-
gral. Variation of action St

� gives


St
� = − p0

� · 
r0
� + pt

� · 
rt
�.

Variation of the action difference St
0−St

� in terms of the varia-
tions of variables �r ,�r becomes


�St
0 − St

�� = �p0 · 
r0 + p0 · 
�r0 − �pt · 
rt − pt · 
�rt.

Due to the �rt=0 constraint, we have a constraint 
�rt
=0 on the variation of endpoints. Expanding variations of
positions at time t in terms of variations of phase-space co-
ordinates at time 0, we find


�St
0 − St

�� = ��p0 − �pt ·
�rt

�r0
� · 
r0 − �pt ·

�rt

�r0
· 
p0

+ p0 · 
�r0. �10�

There are three stationary phase conditions,

�p0 − �pt ·
�rt

�r0
= 0, �11�

�pt ·
�rt

�r0
= 0, �12�

p0 · 
�r0 = 0. �13�

The third SP condition was intentionally written in the full
form. The solution to these three equations is

�p0 = �pt = �r0 = 0. �14�

In general, all three conditions would be satisfied only for a
discrete set of trajectories �together with the constraint �rt
=0 there are 4d equations for 4d unknowns x0, �x0�. How-
ever, for zero perturbation ��=0�, one immediately sees that
the solution �14� exists for each pair �r0 ,p0�: the solution
consists of identical trajectories �x�=0 for all times �, 0
��� t. As we shall see below in Eq. �23�, also the final
result for fidelity becomes exact in this limit ��=0�. If we
add the perturbation, these precise solutions break down, due
to the exponential sensitivity of classical dynamics. Due to
the exponential divergence of trajectories with �x0=0, we
would only expect a discrete number of fortuitous solutions
satisfying �xt=0. However, as was shown in Ref. �27�, if the
shadowing theorem �28,29� is applicable in the given system
�for a given perturbation � and up to time t�, there will be a
very near solution with �x�
0 for all times �, 0��� t.
Putting off a discussion of the shadowing theorem until later,
suffice it to say that this theorem, completely counterintu-
itively, guarantees that we can compensate one exponential

sensitivity �to perturbations of H0� by another exponential
sensitivity �to initial conditions� and get a trajectory which
remains very close to the unperturbed trajectory up to time t.
Assuming the validity of shadowing, the solutions dephase
as

St
0 − St

� 
 − �St
��x0� − �rt · pt + �r0 · p0 �15�

�St
��x0� = − ��

0

t

d�V�r�,�� . �16�

The first term in Eq.�15�, �St�x0�, is due to the perturbing
potential �V along the unperturbed trajectory, the other two
terms are due to the small difference of trajectories at time t
and at time 0. We shall use the action difference �15� to
simplify integral �9� for fidelity amplitude. If we plan to
evaluate the integral over �x0 first, we can assume x0 fixed
for a moment. Then for small �x0, we can approximate the
product of the two Jacobians in Eq. �9� as

� �rt
0

�p0
0�1/2� �rt

�

�p0
��1/2


 � ��− �rt�
��− �p0�

�1/2� ��rt

��p0
�1/2

= � ��rt

��p0
��x0� �17�

and change variables from �p0 to �rt in Eq. �9�,

O�t� = �2� � �−d� dx0� d�r0� d�rt�
*�r0

��
��rt�

	��r0
0�exp� i

�
�St

0 − St
��� . �18�

Integration over �rt eliminates the 
 function,

O�t� = �2� � �−d� dx0� d�r0�*�r0
����r0

0�

	�exp� i

�
�St

0 − St
����

�rt=0
. �19�

Substituting the action difference �15� into integral �19�,
we obtain our main result, the dephasing representation �3�,

ODR�t� = �2� � �−d� dx0� d�r0�*�r0 +
1

2
�r0�

	��r0 −
1

2
�r0�exp� i

�
�− �St

� + �r0 · p0�� .

�20�

The final result is more succinctly written as

ODR�t� =� dx0�W�x0�exp�− i�St
��x0�/ � � , �21�

using the Wigner function of the initial state ���,
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�W�r,p� = �2� � �−d� d�r�*�r +
1

2
�r�

	��r −
1

2
�r�exp�i�r · p/ � � . �22�

The general expression �21� expresses fidelity as an inter-
ference integral over initial positions r0 and momenta p0.
The amplitude of each term is given by the Wigner function
�W�r0 ,p0� and the phase by the integral of the perturbing
potential along the unperturbed trajectory, �St

��r0 ,p0�. As
time increases, each trajectory accumulates phase due to the
perturbing potential and its contribution “dephases” in com-
parison with the situation where perturbation vanishes. In
Eq. �21�, decay of fidelity appears—surprisingly—to be
completely due to the destructive interference �caused by this
dephasing� and not at all due to the decay of classical over-
laps �caused by the perturbation of classical trajectories�.
Nevertheless, as will be seen in the numerical examples be-
low, Eq. �21� captures even the component of fidelity decay
that is due to the decay of classical overlaps in the usual SC
picture. Because of these surprising properties, expression
�21� was called dephasing representation in Ref. �27�.

Although we started our derivation for a pure state, we
ended up with a DR in terms of the Wigner function. Since
this function can also be defined for mixed states, it appears
that expression �21� should remain valid for mixed states,
with appropriate generalization of the notion of fidelity. In
Sec. III, it will be shown that this is indeed the case.

It should be pointed out that a separate diagonal approxi-
mation was not necessary in this approach: the majority of
nearly stationary-phase solutions are nearly “diagonal”
��x�
0�. Whereas the solutions �x0
0 exist for every x0

�2d-dimensional solution space�, other solutions are very
special and exist only for discrete values of x0 and �x0
�0-dimensional solution space�. In other SC approaches
�which do not use an initial value representation�, a separate
diagonal approximation is necessary and is justified by aver-
aging over impurities or over initial states �4,7�. However, in
certain situations, using a periodic orbit expansion rather
than an IVR integral over the whole phase space, off-
diagonal solutions have been shown to be important �37,38�
for long times where almost degenerate periodic orbits exist.
It would be interesting to see if there are systems or regimes
in which the DR severely breaks down because of the off-
diagonal terms. The only breakdown of DR of which the
author is aware is in the perturbative regime after the Heisen-
berg time �23�. But in general, a SC approximation that does
not consider the discreteness of the spectrum is not expected
to work after the Heisenberg time. The computational advan-
tage of the DR over other SC methods in general is that the
search for periodic orbits or other special classical trajecto-
ries is not necessary. If off-diagonal terms of the type that
Sieber and Richter �37� discuss were important, it would be
difficult to include them in the dephasing approximation ex-
plicitly without losing its efficiency. On the other hand, the
off-diagonal terms are implicitly included in the uniform
method �7�, which is unfortunately computationally much
more expensive if at all tractable, especially in higher-
dimensional systems.

There is another simple argument in favor of the DR and
against considering other terms than those with �x�
0. For
zero perturbations, �=0, expression �21� correctly reduces to
the exact result,

ODR
�=0�t� =� dx0�W�x0� = 1, �23�

for all times t, where the basic property of the Wigner func-
tion was used. This simple result is reassuring because the
“more accurate” SC expressions such as the uniform result
�7� or the nonuniform Van Vleck representations from Refs.
�4,7� �before the diagonal approximation� do not reduce to
the exact result for zero perturbations. Including the “off-
diagonal” terms in this case would break equality �23�.

C. Shadowing theorem and its double use

Shadowing theorems in general state that �under certain
detailed conditions� for small enough � there is a time t such
that for a trajectory of H0 with initial condition r0

0, p0
0 there

exists a trajectory of H� with initial condition r0
�, p0

� remain-
ing within a certain small distance from the first trajectory up
to time t. In uniformly hyperbolic systems this shadowing
time t is infinite �39,40�, in more general systems at least
finite �29�. Since it is very difficult to find the maximum
shadowing time t and the corresponding bound on the close-
ness of trajectories for a specific system, the derivation of
DR of fidelity assumed that shadowing was applicable for a
given perturbation and time: the numerical results will pro-
vide the final verification.

In order to use DR in numerical applications, one only
needs to generate initial conditions r0, p0 from a distribution
given by the Wigner function �W, run trajectories with the
unperturbed Hamiltonian H0 and compute the action differ-
ence �St

�=−�	0
t d�V�r� ,�� along this trajectory. There is no

need to compute Van Vleck determinants or Maslov indices
as in many other SC applications. Because the Wigner func-
tion, unlike classical probability, can be negative, some care
must be taken to sample from this distribution. The simplest
possible recipe would be to sample according to the prob-
ability ��W� and attach a sign afterward together with the
dephasing factor. As we will see from the analysis of special
cases in Sec. IV, Wigner function is particularly simple for
position and momentum eigenstates �just a delta function�,
for Gaussian wave packets �a Gaussian in both position and
momentum�, or for a random mixed state �a constant over the
whole phase space�. These distributions can be easily
sampled using standard methods. For general pure or mixed
states one can resort to a Monte Carlo procedure, e.g., using
the Metropolis algorithm, which is frequently done for the
IVR approximation �25�.

One might object that numerical computation of trajecto-
ries, due to the exponential sensitivity of classical evolution,
will destroy the validity of the DR �21�. However, here the
shadowing theorem helps again—in fact in its original form
�28,29� where the perturbation was indeed due to errors of
numerical propagation. The shadowing idea, as stated in
Refs. �28,29�, guarantees that for each numerical �noisy� tra-
jectory there will be a nearby exact trajectory of H0.
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III. DEPHASING REPRESENTATION FOR A GENERAL
MIXED STATE

There are at least two ways to generalize the pure-state
definition �2� of fidelity to mixed states. The simplest gener-
alization is in terms of fidelity amplitude,

Omixed1�t� = tr�e−iH0t/��e+iH�t/�� , �24�

where � is the density matrix of the mixed state, normalized
such that tr�=1 �11�. For pure states �= ������, this general
definition reduces to the pure-state definition �2�. One inter-
pretation of the general expression �24� is that the ket vectors
evolve with the unperturbed Hamiltonian H0 and the bra vec-
tors with the perturbed Hamiltonian H�. Another interpreta-
tion is that expression �24� is simply an average of fidelity
amplitudes of pure-state components of the given mixed
state. This should be distinguished from the often studied
averaged fidelity.

The second possible generalization of the notion of fidel-
ity to mixed states replaces the expression for fidelity �1�,
rather than fidelity amplitude �2�, by an expression

Mmixed 2�t� = tr��0�t����t��/tr�2 = tr���0���t��/tr�2, �25�

where �0�t�, ���t� are the evolved density operators,

���t� = e−iH�t/��e+iH�t/�,

or, alternatively, ��t� is the evolved operator,

��t� = e+iH�t/�e−iH0t/��e+iH0t/�e−iH�t/�.

Again for pure states �= ������, definition �25� reduces to the
pure-state definition �1�.

In what follows the simplest generalization �24� in terms
of fidelity amplitude is assumed. There are three reasons for
this choice: First, there is a simple interpretation: fidelity
amplitude of a mixed state is the average of fidelity ampli-
tudes of the pure-state components of the given mixed state.
Second, the DR �21� directly generalizes to mixed states
when this definition is used. Third, there are both experi-
ments �22� and an experimental proposal �41� that measure
averaged fidelity amplitude rather than averaged fidelity �that
is usually considered in literature� or expression �25�.

With the mixed-state definition �24�, the SC derivation in
Eqs. �4�–�21� can be followed closely for mixed states, if we
replace the product �� �r0

���r0
0 ���=�*�r0

����r0
0� in Eqs. �6�,

�9�, �19�, and �20� by the matrix element �r0
0 �� �r0

�� of the
density operator. At the end, we obtain the same final result
�21�, only the Wigner function of a pure state �22� must be
replaced by the Wigner-Weyl transform of the density opera-
tor,

�W�r,p� = �2� � �−d� d�r�r +
1

2
�r���r −

1

2
�r�

	exp�i�r · p/ � � . �26�

IV. SPECIAL CASES

For a position state �R�, ��r�=
�r−R�, Wigner function
�22� is

�W
pos.st.�r,p� = �2� � �−d
�r − R� . �27�

Substituting Eq. �22� into the general DR �21�, we find

ODR
pos.st.�t� = �2� � �−d� dp0exp�− i�St

��R,p0�/ � � ,

in agreement with Eq. �1� from Ref. �27� and with Ref. �23�.
For a momentum state �P�, ��r�= �2�� �−d/2exp�iP ·r / � �,

Wigner function �22� becomes

�W
mom.st.�r,p� = �2� � �−d
�p − P� , �28�

and the general DR of fidelity �21� reduces to

ODR
mom.st.�t� = �2� � �−d� dr0exp�− i�St

��r0,P�/ � � .

A general Gaussian wave packet with average position R,
average momentum P, and position spread �,

��r� = ���2�−d/4exp�iP · �r − R�/ � − �r − R�2/2�2� ,

has Wigner function

�W
gen.G.w.p.�r,p� = �� � �−dexp�− �r − R�2/�2 − �p − P�2�2/�2� .

�29�

In general the DR of a Gaussian wave packet is Eq. �21� with
the Wigner function �29� where we must include dephasing
trajectories with varying both positions and momenta. Only
in special cases, such as when the wave packet is strongly
localized in position �i.e., when ��1/2�, can we make a
further simplification by replacement of �St

��r0 ,p0� by
�St

��R ,p0� in Eq. �21�. Then we can compute the r0 integral
in Eq. �21� analytically and obtain

ODR
pos.G.w.p.�t� = ��2/��2�d/2� dp0exp�− i�St

��R,p0�/ �

− �p − P�2�2/�2� , �30�

in agreement with Eq. �8� in Ref. �23�. There the same result
was obtained by linearizing the Van Vleck SC propagator
about the central trajectory. In Sec. V it will be shown that
the symmetric expression �29� based on the general DR �21�
is superior to the specialized form �30�. Similarly, if the ini-
tial Gaussian wave packet is localized in momentum �i.e.,
when ���1/2�, we can replace �St

��r0 ,p0� by �St
��r0 ,P� and

obtain

ODR
mom.G.w.p.�t� = ���2�−d/2� dr0exp�− i�St

��r0,P�/ �

− �r − R�2/�2� . �31�

For general �non-Gaussian� wave packets, which are never-
theless localized either in position �about R� or momentum
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�about P�, we can use the general property of the Wigner
function

� dr�W�r,p� = ���p��2,

� dp�W�r,p� = ���r��2,

and obtain, upon substitution into the general DR �21�,

ODR
pos.w.p.�t� =� dp0exp�− i�St

��R,p0�/ � ����p0��2, �32�

ODR
mom.w.p.�t� =� dr0exp�− i�St

��r0,P�/ � ����r0��2. �33�

Finally, for a random mixture of pure states, i.e., an inco-
herent superposition of all pure basis states, the density op-
erator as well as its Wigner function �26� is just a constant
�independent of position or momenta�, and for a system with
a finite phase-space volume �, the DR becomes

ODR
rand.mixt.�t� =

1

�
� dr0� dp0exp�− i�St

�/ � � . �34�

Since fidelity amplitude of a random mixture is an average
fidelity amplitude of pure basis states in any basis, it is in
particular equal to the average fidelity amplitude in random
pure-state basis. But this has been in turn shown �14� to be
equal �up to an asymptotic term 1/n� to the so-called fidelity
of a random pure state �i.e., fidelity averaged over a Gaussian
ensemble�. So in the limit of large n, expression �34� can also
be used to compute fidelity of a random pure state. This
connection is not true for other mixed states.

It should be pointed out that while names like “position”
or “momentum” states have been used to describe the special
cases, they do not necessarily need to be eigenstates of the
usual position or momentum operator. In the case of abstract
Hilbert space with a finite basis, “position” states are simply
the basis states �called computational states in the setting of
quantum information, and could be, e.g., spin eigenstates�,
and momentum states are simply the states defined by the
discrete Fourier transform of the original basis states �34�. In
Ref. �34�, this generalized phase-space representation is used
to show that for quite a few interesting operations on com-
putational states, the Wigner function evolves classically. In
all these cases, the DR described in Secs. II–V should be
applicable if a discrete Wigner function �34� is used and
other simple modifications are made to account for the finite-
size of phase space. In fact, this is done in the numerical
examples in the following section.

V. NUMERICAL TESTS

Now let us apply the theoretical analysis from previous
sections to a specific system, the Chirikov standard map. Its
advantage is that it is discrete, coordinate space is only one
dimensional, but at the same time standard map already con-

tains generic complexities of classical dynamics. Specifi-
cally, the phase space is mixed and so various simplifications
applicable in quasi-integrable or strongly chaotic systems are
in general not applicable. Haug et al. �41� provide a detailed
theoretical analysis as well as a proposal of an experiment to
study quantum fidelity of the standard map.

The standard map is a symplectic map defined on a com-
pact two-dimensional phase-space torus, as follows:

qj+1 = qj + pj �mod 2�� ,

pj+1 = pj − �W�qj+1� − � � V�qj+1� �mod 2�� ,

where q and p are position and momentum on the torus,
potential W�q�=−k cos q, and the perturbation is V�q�=
−cos 2q. Using an n-dimensional Hilbert space for the quan-
tized map fixes the effective Planck constant to be �
= �2�n�−1. Heisenberg time tH�n. �We are using letter q for
the coordinate to distinguish this special system from the
general considerations. Similarly, we will use letter Q to de-
note the position of a position state or center of a wave
packet.� The parameter k controls the type of dynamics the
system exhibits. For k1, the map is close to being inte-
grable, for k�1, the map is strongly chaotic. The goal of this
section is not to use the dephasing representation to explore
various universal regimes that occur in these two limits and
have been carefully studied in the literature. This was already
done in Refs. �23,42�. The goal of this section is rather to
explore the detailed features of fidelity in nonuniversal re-
gimes. The most interesting region of parameter space is in
the vicinity of k=1, since there phase space has a significant
amount of chaotic as well as integrable regions. Mixed phase
space is in general the hardest to treat and therefore this
setting is chosen here because it provides the most challeng-
ing test for any approximation.

A. Gaussian wave packets

One might think that general DR �21� is only useful for
highly nonlocal states and that the original expression �27�
from Ref. �23� is good enough at least for Gaussian wave
packets. This subsection demonstrates that even for Gaussian
wave packets, general DR �21� is superior to the original
expression �27� from Ref. �23�.

Figure 1 compares three approximations to compute fidel-
ity of Gaussian wave packets with the exact result: �i� ex-
pression �27�, originally derived in Ref. �23�, for wave pack-
ets localized in position, �ii� corresponding expression �31�
for wave packets localized in momentum, and �iii� the gen-
eral DR �21�, with the Wigner function �29�, symmetrically
treating position and momentum. Exact fidelity is computed
by an algorithm described in Ref. �23�.

For a wave packet localized in position ��=0.004�� in
Fig. 1�a�, the original expression �27� from Ref. �23� works
very well and is almost indistinguishable from the general
DR �21�, as expected, whereas Eq. �31� for momentum wave
packets fails. For a wave packet localized in momentum ��
=0.16�� in Fig. 1�b�, the momentum-wave-packet expres-
sion �31�� works well and it is almost indistinguishable from
the general DR �21�, but the original position-wave-packet

JIŘÍ VANÍČEK PHYSICAL REVIEW E 73, 046204 �2006�

046204-6



expression �27� from Ref. �23� fails completely. The general
DR works very well in both cases. It might seem that either
the momentum or position versions could cover the whole
range of Gaussian wave packets, because one might think
that the intermediate case, i.e., a fairly symmetric wave
packet, is localized enough in both position and momentum.
That this is not so is provided by the final test in Fig. 1�c�
��=0.04��: both specialized expressions �30� and �31� give
a significant error in comparison with exact fidelity, but the
general DR �21� gives very accurate results, as expected be-
cause of its “fair” treatment of position and momentum. To
conclude, expression �21�, is accurate for the whole range of
Gaussian wave packets, from positionlike to symmetric to
momentumlike, even in the presence of mixed dynamics.

It should be noted that another “uniform” SC expression
appeared in the literature �43�. It improved on the SC expres-
sion for fidelity by Vaníček and Heller �23�, by expanding
the action about the central trajectory to second instead of
first order in position difference. For this reason, it would
still work only for position localized wave packets, such as
in Fig. 1�a� and would fail for cases in Figs. 1�b� and 1�c�.
Advantage of the dephasing representation �21�, published in
Ref. �27�, is that it does not approximate the action: it com-
putes the action exactly, or effectively expands the action to
infinite order in the position difference.

B. Nonlocal states

For nonlocal states, there is even less hope that the
position-wave-packet expression for fidelity �30� from Ref.
�23� would work. One might think that for a superposition of
localized wave packets it is enough to simply add the terms
�30� for fidelity amplitude. This is not the case which can be
seen by considering a wave packet � that is a superposition
of two Gaussian wave packets �1 and �2, centered at phase
space points �R1 ,P1� and �R2 ,P2�. The resulting wave
packet has a Wigner function that is not just a simple sum of
the Wigner functions of the two Gaussian wave packets. The
correct Wigner function has in addition an interference term
localized in the vicinity of the phase-space point ��R1

+R2� /2, �P1+P2� /2�. We will demonstrate now the impor-
tance of this interference term and show that if it is taken into
account, general DR �21� will still give excellent results,
even for nonlocal states.

Being motivated by the quantum computation applica-
tions, let us consider a superposition of computational states
�i.e., position states in the abstract phase space�, instead of
Gaussian wave packets. Our initial state is a coherent super-
position,

��� =
1
�2

��R1� + �R2�� , �35�

with a Wigner distribution,

�W
coh�r,p� =

1

2
�2� � �−d�
�r − R1� + 
�r − R2�

+ 2
�r − �R1 + R2�/2�cos��R1 − R2� · p/ � � .

�36�

If the interference term is neglected, we obtain a Wigner
function of the incoherent superposition �38�,

�W
incoh�r,p� =

1

2
�2� � �−d�
�r − R1� + 
�r − R2�� . �37�

Figure 2 compares two approximate ways to compute fi-
delity with the exact quantum result: both approximations
use general DR �21�, but whereas one uses the correct full
Wigner function �36�, the other uses the incorrect Wigner
function �37�, neglecting the interference term. The coordi-
nate distance of the two component states varies in the two
parts. If positions R1 and R2 are largely separated, oscilla-
tions in the interference term have a high frequency. Because
nearby initial conditions follow similar trajectories and have
similar actions, the phase factor in the DR �21� varies slowly.
Therefore the fast oscillations in the weight factor given by
the interference term in the Wigner function can completely
cancel out the contribution of the interference part to the DR
integral. �Incidentally, this situation is in a way opposite to
the usual SC considerations where the weight is a slowly
varying function and the phase factor is the fast oscillating
factor.� Figure 2�a� shows an example of situation where this
cancellation occurs: Q1=0.4� and Q2=1.2�. Because the in-
terference term is negligible, both approximations give the
same and very accurate results.

FIG. 1. �Color online� Fidelity for a Gaussian wave packet cen-
tered at Q=0.7�, P=0.4� in a perturbed standard map with n
=1000, k=0.95, �=0.015. Comparison of the exact result �solid
dots�, general DR �solid line�, and its specialized forms for posi-
tionlike �red-dashed line� and momentumlike wave packets �blue-
dotted line�. The initial position spread � of the Gaussian is �a�
0.004�, �b� 0.16�, and �c� 0.04�. The DR calculations used 1000
classical trajectories.
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If the initial states are closer, as in Fig. 2�b�, where Q1
=0.4� and Q2=0.42�, the interference term is important,
and only the DR with the correct Wigner function �36� agrees
well with the exact result. This shows that for coherent non-
local states, general DR �21� must be used instead of some
approximate versions which neglect quantum coherence of
the initial state.

C. Mixed states

Wigner function �37� was wrong for the coherent state
�35�, but it does correctly describe a certain mixed state,
namely the incoherent superposition of computational states
�R1� and �R2�,

�incoh =
1

2
��R1��R1� + �R2��R2�� . �38�

In Sec. III it was shown that if the generalized definition �24�
of fidelity for mixed states is used, dephasing representation
�21� remains valid, as long as the Wigner transform of the
density operator �26� is used. Figure 3 compares DR �21�
with the Wigner function �37� with the exact fidelity for the
mixed state �38�. The agreement is again very good.

Last but not least we consider the random mixture of pure
states. It is an incoherent superposition of all computational
states and in a finite-dimensional Hilbert space, its density
operator is

�rand.mixt. =
1

n
�
i=1

n

�Qi��Qi� =
1

n
1̂ .

Figure 4 compares the random-mixture version �34� of the
DR with the exact result. It is reassuring that even in the case

that the whole phase space is important, with just 1000 tra-
jectories, the DR still works so well—despite the fact that it
was derived solely from SC arguments and requires only
classical information.

Even though the match between the exact calculation and
the dephasing representation was very good in all examples
above, there was some remaining discrepancy, especially at
long times. The following section therefore discusses nu-
merical errors that are present in the computational imple-
mentation of the DR.

VI. NUMERICAL ERRORS OF THE DEPHASING
REPRESENTATION

Besides the intrinsic errors of the approximation, numeri-
cal evaluation causes additional deviations from exact fidel-
ity amplitude. If evaluated exactly, the dephasing representa-
tion

ODR�t� =� dx�W�x�e−i�St
��x�/� = �e−i�� �39�

considers all classical trajectories with their proper weight.
Numerical implementation of the DR,

Onum�t� =
1

N
�
j=1

N

e−i�St,j
� /� =

1

N
�
j=1

N

e−i�j , �40�

computes fidelity amplitude as an average over only a finite
number N of trajectories. There are three types of numerical
errors that affect expression �40�: �i� the error of evaluating

FIG. 2. �Color online� Fidelity for a nonlocal state—coherent
superposition of two position states—in a perturbed standard map
with n=200, k=0.7, �=0.02. Comparison of the exact result �solid
dots�, general DR �solid line�, and the approximate DR neglecting
coherence effects in the Wigner function �purple dashed-dotted
line�. The two position states are located at �a� Q1=0.4� and Q2

=1.2�, �b� Q1=0.4� and Q2=0.42�. In both parts, 400 classical
trajectories were used.

FIG. 3. Fidelity for a mixed state—incoherent superposition of
two position states—in a perturbed standard map. All parameters
are the same as in Fig. 2�b�, except that only 200 trajectories were
used. Comparison of the exact result �solid dots� and general DR
�solid line�.

FIG. 4. Fidelity for a random mixed state—incoherent superpo-
sition of all basis states—in a perturbed standard map with n=100,
k=2, �=0.03. Comparison of the exact �solid dots� result and gen-
eral DR �solid line�. 1000 classical trajectories were used.
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the phase � j of each term �action difference �St,j
� �; �ii� the

error due to averaging over only a finite number of terms;
�iii� the error due to adding up oscillatory terms.

The first type of error, i.e., the error in fidelity amplitude
due to errors in evaluating actions, can be represented by
replacing the exact phase � by �+�� in Eq. �39�,

Onum1�t� = �e−i��+���� . �41�

Assuming that numerical errors in phases are uncorrelated to
the phases themselves,

Onum1�t� = �e−i���e−i��� = ODR�t��e−i��� . �42�

Furthermore, assuming that numerical errors at different time
steps are uncorrelated, accumulation of error in phase fol-
lows a random walk, with a variance �at time t�

�����2�t = 
2t , �43�

where 
 is the error in phase per time step. Expression �42�
simplifies to

Onum1�t� = ODRe−�����2�t/2 = ODR�t�e−
2t/2.

If the only numerical error were in the phases of various
terms, numerical fidelity would be smaller than the exact
value ODR by a factor e−
2t/2.

The second and most important type of error is due to
averaging over a finite number of terms,

Onum2�t� =
1

N
�
j=1

N

e−i�j . �44�

Let P��� denote the distribution function of phases. It satis-
fies the normalization condition

� P���d� = 1.

In general, there could be two types of error of fidelity am-
plitude, systematic and statistical,

�syst = �Onum� − ODR, �45�

�stat = ���Onum − �Onum��2� = ���Onum�2� − ��Onum��2. �46�

The brackets �¯� denote the average over the distribution
P���. The systematic error vanishes for fidelity amplitude,
�syst=0, since

ODR�t� =� P���e−i�d� , �47�

�Onum�t�� =
1

N
� d�1P��1� ¯� d�NP��N��

j=1

N

e−i�j

=
1

N
�
j=1

N

ODR�t� = ODR�t� .

The statistical error is nonzero because

��Onum�t��2� =
1

N2 � d�1P��1� ¯� d�NP��N���
j=1

N

e−i�j�2

=
1

N2 �N + N�N − 1��ODR�t��2�

=
1

N
+ �1 −

1

N
��ODR�t��2. �48�

It follows from Eqs. �46�–�48� that the statistical error
squared is

�stat
2 =

1

N
�1 − �ODR�t��2� . �49�

For small values of fidelity �i.e., in general for long times or
large perturbations�, the statistical error is approximately
1/�N. For short times, when �ODR�t� � 
1, the statistical error
vanishes. A similar analysis can be performed for fidelity
itself. In fact this is the quantity that is displayed in Figs.
1–4. For fidelity, the systematic error is nonzero because

�syst = ��Onum�2� − �ODR�t��2 =
1

N
�1 − �ODR�t��2� . �50�

The statistical error squared is

�stat
2 = ���Onum�2 − ��Onum�2��2� = ��Onum�4� − ��Onum�2�2.

�51�

It is a bit harder to evaluate since ��Onum�4� has several types
of “cross terms,” but following a procedure similar to Eq.
�48�, the statistical error squared �to leading order in inverse
powers of N� is

�stat
2 =

2

N
�Re��e2i���e−i��2� + �ODR�t��2 − 2�ODR�t��4�

+ O�1/N2� . �52�

For small values of fidelity, statistical error will be of the
order O��ODR�t� � /�N�. For short times or small perturbations
when �ODR�t� � 
1, the statistical error will again vanish
since the three terms in the square brackets will exactly can-
cel each other.

The third type of error is due to adding up oscillatory
terms. It can be represented as

Onum3�t� =
1

N
�
j=1

N

�1 + 
 j�e−i�j , �53�

i.e., each term has the correct phase, but a slightly perturbed
amplitude. Simplifying expression �53� assuming that nu-
merical errors � j are uncorrelated with phases � j,

Onum3�t� = Onum2�t� +
1

N
�
j=1

N


 je
−i�j
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=Onum2�t� +
1

N
�
j=1

N


 j
1

N�
k=1

N

e−i�k

= Onum2�t��1 +
1

N
�
j=1

N


 j� .

Assuming that errors of different terms are uncorrelated, the
effect of these errors on Onum can be described as

Onum3�t� 
 ODR�t��1 ± 
/�N� ,

where 
 is the magnitude of error in amplitude of a typical
term. The relative error in Onum3�t� is proportional to the
accuracy 
 and inversely proportional to the square root of
the number of trajectories.

Errors of Onum1�t� and Onum3�t� depend on the accuracy of
calculation and can be diminished by improving this numeri-
cal accuracy. The second type of error, of Onum2�t� depends
only on the exact �non-numerical� averages and on the num-
ber N of classical trajectories used. Therefore this appears to
be the most important source of error in the numerical cal-
culation of ODR. In the case of fidelity rather than fidelity
amplitude, the nonzero systematic error �50� for finite N sug-
gests that the numerical result could be improved by replac-
ing Mnum= �Onum�2 by

M̃num = �Onum�2 − �syst = �Onum�2 −
1

N
�1 − �ODR�2�


 �Onum�2�1 +
1

N
� −

1

N
.

Figure 5 compares three types of errors: �Mnum−MQM�,
�M̃num−MQM�, and �stat according to Eq. �52� for a random
mixture from Fig. 4. Already for N=100 that is used in the
figure, the systematic error �50� is quite small, so �Mnum

−MQM� is very close to �M̃num−MQM�. Both numerical errors
also follow very closely statistical error �stat computed ac-
cording to the theoretical estimate �52�.

Figure 6 shows the dependence of three types of time-
averaged errors on the number N of classical trajectories
used: the time-averaged numerical error
��1/ t���=1

t �Mnum���−MQM����2�1/2, an analogous time aver-

age for M̃num, and the time-averaged statistical error
��1/ t���=1

t �stat
2 ����1/2. As expected, the numerical error fol-

lows the statistical error for smaller values of N �approxi-
mately up to N
n�. For larger values of N, the statistical
error decreases further, but the numerical error saturates at a
horizontal asymptote due to the intrinsic error of the dephas-
ing representation.

VII. RELATION TO OTHER “WIGNER” METHODS

It should be noted that the Wigner distribution has been
used in various other approximate methods, especially in
chemical physics. For instance, it was used to compute pho-
todissociation cross sections �44,45�, to treat inelastic scat-
tering �46�, or to compute thermal correlation functions using
the linearized SC IVR method �25,47,48�. In all these appli-
cations, there was just one Hamiltonian, but the two states
�or more generally, density or other operators� were different.
The quantity of interest was a general correlation function of
the type

CAB�t� = tr�AU†BU� , �54�

where A and B are general operators and U=Te−i	Hd� is the
time evolution operator. Using various approximations, all
authors �25,44–48� obtain the same final result, expressed as
an overlap of two Wigner distributions, one at time 0, the
other evolved classically to time t,

CAB
Wigner�t� = �2� � �d� dr0� dp0AW�r0,p0�BW�rt,pt� .

�55�

Here AW and BW are the Wigner transforms �26� of operators
A and B.

Because there is only one Hamiltonian, there is no
dephasing factor ei�S/�, as in the DR. In fact we could apply
one of these older approaches to the second generalized defi-
nition �25� of fidelity for mixed states because that definition
is in the form of Eq. �54� with A=B=� and the time evolu-
tion operator U=e+iH�t/�e−iH0t/�. Then we would obtain a very
different result from the DR,

FIG. 5. �Color online� Dependence of numerical errors of DR on
time for the random mixture with the same parameters as in Fig. 4,

except N=100: �Mnum−MQM� �solid line�, �M̃num−MQM� �blue-
dotted line�, and �stat �red-dashed line�.

FIG. 6. �Color online� Dependence of time-averaged numerical
errors (��1/ t���=1

t �2����1/2) of DR on the number N of classical

trajectories: �= �Mnum−MQM� �solid line�, �= �M̃num−MQM� �blue-
dotted line�, and �=�stat �red-dashed line�. Parameters are the same
as in Fig. 5, in particular t=100.
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MWigner�t� = �2� � �d� dr0� dp0�W�r0,p0��W�rt,pt� .

�56�

Although appearing as elegant as the DR, there is a problem
with this expression. First, it will be much more sensitive to
numerical errors. We can see that already by considering
zero perturbation. Correctly, for each initial condition r0 ,p0,
we should have r0=rt and pt=p0. In systems with nonlinear
dynamics, particularly chaotic systems, numerical errors in
forward and backward propagation will yield exponentially
growing errors. If the initial state is a localized wave packet,
expression �56� would give a numerically decaying overlap
even for zero perturbations when exact fidelity is constant
M�t�=1. Indeed, a numerical test not presented here showed
that instead of staying at unity forever, MWigner
1 for a fi-
nite time and then decays exponentially.

Even if numerical errors did not exist, Eq. �56� would
have problems. It can describe some interference, but only
that due to the oscillating parts in the Wigner function of the
initial state. For simple Gaussian wave packets, the Wigner
function is positive and the fidelity decay in Eq. �56� is com-
pletely due to the decay of classical overlaps, i.e., classical
fidelity. To conclude, the “Wigner” form �56� is apparently
not as good as the DR because it does not account for “dy-
namical” dephasing, but it does deserve further study, espe-
cially because it might shed further light on the question of
the importance of various contributions to fidelity. Numerical
tests not presented here show that, as expected, MWigner cor-
rectly describes exact fidelity in both chaotic and quasi-
integrable systems for large perturbations �i.e., in Lyapunov
and algebraic regimes, respectively�, when the decay can be
described classically �42�. It gives wrong results in both cha-
otic and quasi-integrable systems for small perturbations �in
the FGR and Gaussian regimes�, when the decay cannot be
described classically �42�.

VIII. CONCLUSION

This paper has presented a derivation of a general semi-
classical expression for fidelity of pure and mixed states.
This dephasing representation expresses fidelity as an inter-
ference integral, with weight of each term given by the
Wigner function of the initial state and the phase by the
integrated perturbation along an unperturbed trajectory. In
particular, no analog of the Van Vleck determinant is needed.
As the original specialized expression �30� from Ref. �23�,
the DR avoids searching for the exponentially growing num-
ber of terms in the standard SC expressions �4�. It also
avoids the ubiquitous divergences in Van Vleck determinants
present in the usual SC expressions.

The justification of the DR provides an interesting appli-
cation of the shadowing theorem. Instead of validating the
numerically noisy calculation of classical averages, here
shadowing was used to support a SC computation of a quan-
tum object–quantum fidelity. Another aspect that makes the
DR a “bridge” between classical and quantum mechanics is
the following: On one hand, similarly as Van Vleck’s propa-
gator, but unlike Feynman’s path integral, the DR uses only
classically allowed trajectories. On the other hand, similarly
as Feynman’s path integral, but unlike Van Vleck’s propaga-
tor, the DR gives each trajectory the same dynamical weight
�the only weight—given by the Wigner function—is due to
the initial condition�.

The advantage of DR lies in that it does not require the
original state to be localized. Its form suggests that it should
be applicable to general pure and mixed states. This claim
was supported by the following numerical evidence: First, it
was shown, in the example of Gaussian wave packets, that
position and momentum must be treated symmetrically. This
was the shortcoming of the expression from Ref. �23� and is
corrected in the DR. Second, in the example of coherent
superpositions of states, it was shown that oscillatory pat-
terns in the Wigner function are important. This is related to
the issue of importance of sub-Planck structures on decoher-
ence �17,49�. Finally, it was shown that the DR is also accu-
rate for mixed states: incoherent superpositions and random
mixtures.

While the numerical tests were quite successful, the DR
breaks down in the perturbative regime after Heisenberg time
�23�. This should not be discouraging since then the discrete
features of the spectrum become important. On the other
hand, dephasing representation covers six other known uni-
versal regimes �Fermi Golden Rule �4,6,7,10�, Lyapunov �4�,
Gaussian �10�, algebraic �12�, superexponential �13� regimes,
and fidelity freeze �15�� as well as nonuniversal regimes of
fidelity decay for generic pure and mixed states. Since the
dephasing representation �21� appears to be much closer to
the exact formulation of fidelity in the interaction picture
�11� than the starting SC approximation, a more rigorous
estimate of the errors should be attainable.

Finally, the DR appears to be the method of choice for
approximate but accurate calculation of fidelity in nonuniver-
sal regimes in many-dimensional systems due to the ease of
its computational implementation in comparison with exact
quantum methods.
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