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Replacement manifolds: A method to uniformize semiclassical wave functions
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We present a semiclassical technique that relies on replacing complicated classical manifold structure with
simpler manifolds, which are then evaluated by the usual semiclassical rules. Under circumstances where the
original manifold structure gives poor or useless results semiclassically the replacement manifolds can yield
remarkable accuracy. We give several working examples to illustrate the theory presented here.
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I. INTRODUCTION

Semiclassical methods are based on classical mecha
the relevant classical manifolds form the ‘‘skeleton’’
which the wave function is attached. However, associatin
semiclassical wave function with a classical manifold
problematic when enclosed loops in phase space hav
area less than\. If that happens, typically two or mor
stationary-phase points corresponding to distinct contri
tions to the semiclassical wave function are not well se
rated in phase. Consequently, the stationary-phase~SP!
method, on which the semiclassical approximation is bas
breaks down. Worse, in some important situations, such
the universal homoclinic oscillations associated with chao
regions of phase space, the bad enclosed loops may b
peated many times in a small region@1#.

Although the semiclassical wave function diverges n
caustics lurking near the small area loops, the exact quan
wave function is of course well behaved. This is one ma
festation of quantum smoothing over classical detail and
shall quantify below how this smoothing occurs. We sugg
and test a new way of looking at the smoothing process
terms of ‘‘replacement manifolds,’’ in which new, well be
haved classical manifolds are substituted for the origi
badly behaved ones. One application of this approach is
formizing a semiclassical wave function in the vicinity of th
ubiquitous homoclinic oscillations of a chaotic system.

It is widely understood that very small changes in pote
tials or walls of billiards can have little effect on quantu
eigenstates, but can drastically affect the classical mani
structure. This immediately implies a many-to-one relatio
ship between the classical manifolds and quantum w
functions. That is, many different underlying classical ma
fold patterns correspond to the same wave function. N
whatever the choice of manifold~amongst these equivalen
forms! we can suppose an appropriate uniformization ex
that gives the correct wave function. However, the nonu
formized, simple semiclassical limit for the various choic
of manifolds can differ drastically in accuracy. It is this fa
that we exploit in the present paper.

II. STANDARD UNIFORMIZATION: THE AIRY
FUNCTION

The paradigm example of uniformization is the Airy fun
tion, i.e., the energy eigenfunction of the linear ramp pot
1063-651X/2001/64~2!/026215~11!/$20.00 64 0262
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tial. We take the potential to be of the form

V~q!52bq. ~1!

The Schro¨dinger equation is

2
\2

2m
cE9 ~q!2~bq1E!cE~q!50. ~2!

After the shift

cE~q!5c0~q1E/b! ~3!

and scaling transformation

u5
m1/3b1/3

\2/3
q[gq, ~4!

the Schro¨dinger equation reads

1

2
C9~u!1uC~u!50 ~5!

with C(u)5c0(q). Equation~5! is exactly solved by going
to the momentum representation. We have

S 1

2
p22 i

]

]pDF~p!50 ~6!

with solution ~up to normalization!

F~p!5e2 ip3/6. ~7!

Thus

C~u!5
1

A2p
E

2`

`

eip uF~p!dp

5
2

A2p
E

0

`

cos~p3/62pu!dp

521/3A2pAi ~221/3u! ~8!

and

c~q!}Ai ~221/3gq!5Ai S 221/3m1/3b1/3

\2/3
qD .
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The SP approximation for the momentum integral gives

C~u!;F 1

2 i ~2A2u!
G 1/2

e2 i (A2u)3/61 iA2u u1c.c.

;
23/4

u1/4
cosS 2

3
A2u3/22

p

4 D . ~9!

Noting that

Eu

p~u8!du85
~2u!3/2

3
, ~10!

we get finally

C~u!;
2

Ap~u!
cosS Eu

p~u8!du82
p

4 D .

This is the standard WKB form for the linear ramp potenti
Figure 1 illustrates the situation for the semiclassical

sition wave function, which becomes inaccurate when
area enclosed by the verticalq line and the energy contou
corresponding to the stateuE& falls below Planck’s constant
Upon entering the ‘‘bad’’ region, the original momentum i
tegral may be substituted for the WKB result, giving a u
formization. We have an integral over ‘‘initial momentum
making this example a type of ‘‘initial value representatio
~IVR!, as discussed by Miller@2,3#. Of course in this case we
know the result of the integral is an Airy function, but
general there may be integrals that are neither known a
lytically nor similar to ones that are.

In this paper we encounter more complex situations t
are induced by nonlinear interactions, including chaos,
flection from corrugated surfaces, etc. We will show th

FIG. 1. Diagram showing the areas in phase space importa
the semiclassical approximation to the Airy function.
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intricate manifolds can sometimes be replaced by much s
pler ones, which may themselves be evaluated semicla
cally in any basis, using a much simplified uniformization
required.

III. REPLACEMENT MANIFOLDS

We now introduce an example of such a problematic L
grangian manifold, defined by a position-momentum relat

P~Q!5p2
3

2
\laQ2 sinaQ3 ~11!

~the use of capital letters will become clear in Sec. IV!. This
model was introduced in Ref.@4# but was not explored there
The function ~11! has oscillations of increasing amplitud
and frequency which, however, have the same a
*P(Q)dQ5l\ between successive zeros~see Fig. 2, small
value ofl corresponds to small area of loops!. This is also a
characteristic property of homoclinic oscillations near a p
riodic orbit. The momentumP(Q) spans an ever larger rang
as Q increases, but we now show that forl,1 the mani-
fold’s semiclassical behavior can be understood by replac
it with three smooth manifolds. The rules for replacement
simple to derive.

The action functionS(Q) is the integral ofP(Q),

S~Q!5E
0

Q

P~Q8! dQ85pQ1
1

2
\l~cosaQ321!.

~12!

The ‘‘wave function’’

c~Q!5A~Q! eiS(Q)/\ ~13!

can be approximated by

c~Q!'A~Q! e2 il/2eipQ/\S 11 i
l

2
cos~aQ3! D ~14!

c~Q!'A~Q! e2 il/2eipQ/\S 11 i
l

4
eiaQ3

1 i
l

4
e2 iaQ3D

~15!

if l,1. For smalll this expression is nearly identical wit
Eq. ~13! with the original action~12!, because cos(aQ3) is

to

FIG. 2. Areas in phase space important to momentum w
function associated with the manifold P(Q)5p
2(3/2)\alQ2 sin(aQ3), l50.5. Primitive semiclassical approxi
mation fails since both areasDS1 andDS2 can be smaller than\.
5-2
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REPLACEMENT MANIFOLDS: A METHOD TO . . . PHYSICAL REVIEW E64 026215
bounded by61. However, semiclassically it has the inte
pretation of the sum of three smooth classical manifolds,
P5p, P5p13 \aQ2, andP5p23 \aQ2. They have the
weightse2 il/2A(Q), i (l/4)e2 il/2A(Q), i (l/4)e2 il/2A(Q),
respectively. The situation is depicted in Fig. 3.

Almost every discussion of the relation of classical a
quantum mechanics for chaotic systems alludes to quan
smoothing, but here we have seen explicitly one way t
smoothing comes about. For all reasonable purposes
three smooth classical manifolds accurately replace the r
oscillations of the original manifold. Note, too, that depen
ing on the parameters the outlying manifoldsP5p
13 \aQ2 and P5p23 \aQ2 lie far beyond the limits of
the original distributions. We shall discuss interesting con
quences of this in Sec. IV.

So far, we have considered the wave function only
position representation where caustics are absent and
semiclassical form~13! was accurate. The situation deteri
rates drastically in momentum space. In order to find
wave function in momentum representation, we have to s
over all contributions from intersections of a horizontal li
~corresponding to a momentum eigenstate! with the oscillat-
ing manifold ~11!. When l,1, the adjacent intersection
will be separated by a phaseDS / \ that is smaller than 1 for
any classically allowed momentum, and therefore the s
dard semiclassical approximation will break down forall
classical momenta. The usual Airy-type uniformization
methods of Sec. II~also see@5,6#! do not serve under thes
circumstances because the manifold is dense with cau
~see the filled-in areasDS1 andDS2 in Fig. 2!. Apparently,
we have no other choice but to part with the semiclass
method and use a numerical Fourier transform~IVR! over
the position wave function to obtainf(P). However, using
the replacement manifolds~RMs! is a much simpler and
more intuitive approach which can rescue the situation.

To find the momentum wave functionf(P) associated
with the original manifold we add~with appropriate weights!
wave functionsfn(P) corresponding to the three RMs. Eac
of these partial wave functions is equal to a Fourier tra
form of a corresponding position wave functioncn(Q),

fn~P!5
1

A2p\
E dQ cn~Q! e2 iPQ/\. ~16!

Except for a small region close top ~highlighted in Fig. 3!,
this integral can be evaluated by the SP method. In o

FIG. 3. Original~solid line! and replacement manifolds~dashed
lines! for P(Q)5p2(3/2)\alQ2 sin(aQ3), l50.5.
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words, although the semiclassical approximation comple
fails for the original manifold, it works almost everywher
for the replacement manifolds. Moreover, as we show in
following section, the standard Airy uniformization proc
dure of Sec. II can be exploited to correct the inaccuracy i
narrow region nearp. We will see that the momentum wav
function found by applying SP approximation to RMs is
excellent agreement with numerical solution. We emphas
that the RMs do not yield the original, badly behaved sem
classical result, but rather something much more accu
and much simpler.

IV. UNIFORMIZATION WITH REPLACEMENT
MANIFOLDS IN A GENERALIZED MODEL

In order to capture other properties of homoclinic oscil
tions in our model, we consider a generalized manifold

P~Q!5p2
1

2
\l

dj~Q!

dQ
sinj~Q!, ~17!

in which aQ3 from Eq.~11! is replaced by a generic smoot
function j(Q). The presence of the derivativedj(Q)/dQ
ensures equal loop areas between successive zeros ofj(Q).
Example of a manifold withj(Q)5a log(Q/a) is displayed
in Fig. 5. Manifold ~17! can be obtained from a horizonta
manifold representing a momentum stateup& by a canonical
transformation of coordinates@7#

Q5q, P5p2
1

2
\l

dj

dq
sinj~q!, ~18!

generated by a function

F3~p,Q!52pQ2
1

2
\l cosj~Q!, ~19!

We find the uniform semiclassical transformation elem
^Pup&, and thereby fix the amplitude prefactor to beA(Q)
5(2p\)21/2; this, however, retains all the problematic fe
tures of the manifold. We solve the problem to all orders inl
by replacing the original manifold with an infinite series
RMs. First we note that the semiclassical transformation
ement

^Qup&sc5
1

A2p\
e2 iF 3(p,Q)/\ ~20!

is fairly accurate since there are no caustics in this repre
tation ~to each finalQ corresponds a single initialq). The
momentum-representation element is obtained by a Fou
transform

^Pup&.
1

A2p\
E dQ e2 iPQ/\ ^Qup&sc

5
1

2p\E dQ expH i

\
@2PQ2F3~p,Q!#J . ~21!
5-3
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If evaluated by the SP method, the integral yields a very p
semiclassical result since there exist many coalescing
points. An accurate uniform answer is obtained by evalua
integral ~21! exactly. The accuracy is usually further im
proved by changing the integration variable fromQ to q ~in
our case both forms are equivalent sinceQ5q). This uni-
form version of^Pup& is in IVR form @2,3#, but can best be
evaluated by writinĝQup& as a sum over RMs. Recognizin
that the factor ei (l/2)cosj(Q) in ^Qup&sc
5(2p\)21/2exp@ipQ/\1i(l/2)cosj(Q)# is a generating
function for Bessel functions, we can extend the sum fr
Sec. III beyond the first order inl. In fact we obtain an
infinite sum convergent for anyl,

^Qup&5
1

A2p\
eipQ/\ (

n52`

`

JnS l

2D i neinj(Q)

5 (
n52`

`

JnS l

2D i n^Qup&n , ~22!

where ^Qup&n5(2p\)21/2exp$i@pQ1n\j(Q)#/\%. We can
rewrite Eq.~21! as

^Pup&5 (
n52`

`

JnS l

2D i n

A2p\
E dQ e2 iPQ/\ ^Qup&n

5 (
n52`

`

JnS l

2D i n^Pup&n , ~23!

where

^Pup&n5
1

2p\E dQ expH i

\
@~p2P!Q1n\j~Q!#J

~24!

may be identified semiclassically as a transformation elem
corresponding to thenth RM

Pn~Q!5p1n\
dj~Q!

dQ
. ~25!

This manifold for most functionsj(Q) of interest contains
no caustics, and consequently^Pup&n allows evaluation by
the SP method. As promised, we have expressed the uni
version of ^Pup& as a weighted sum over semiclassical
placement manifolds,

^Pup&uni f5 (
n52`

`

JnS l

2D i n^Pup&n,sc .

If applied to a well-behaved~i.e., decaying fast enough a
6`) function of p, the resulting sum converges for anyl.
The replacement-manifold method is therefore not restric
to the regime where loop areas are smaller than\. It also
works in the strongly chaotic regime wherel.1 ~and where
the standard semiclassical approximation holds! if all mani-
folds up to unu.l are included in the sum. This follow
sinceJn(l/2) considered as a function ofn decays exponen
02621
r
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tially fast for unu.l/2. In other words, we only need t
include several RMs beyond those intersecting the orig
manifold. Physically, the manifolds outside of the range
the original one lie in a classically forbidden region in whic
the wave function is exponentially suppressed.

In the opposite case (l,1) which interests us the mos
considering RMs up tounu51 will suffice while the ‘‘primi-
tive’’ semiclassical approximation fails completely even f
P5p. In this regimel can be thought of as a paramet
defining the strength of a perturbation which causes
manifold to oscillate around a simple manifold that describ
the system if perturbation is absent.

To complete our solution for a specific functionj(Q), we
must evaluatêPup&n . For n50, we cannot use the SP ap
proximation~because the action is linear!, but integral~24! is
trivial and we obtain in general

^Pup&05d~P2p!. ~26!

For nÞ0, the SP method applied to Eq.~24! yields a result in
the form of a sum over SP pointsQsp ,

^Pup&n,sc5
1

A2p\
(

Q5Qsp
U]2f n

]Q2U21/2

3expF i S f n

\
1

p

4
sgn

]2f n

]Q2D G , ~27!

wheref n(Q,P,p)5(p2P) Q1n\j(Q) and] f n /]Q50 for
Q5Qsp . For manifold ~11!, each RM Pn(Q)5p
13n\aQ2 has two SP points

QSP56S P2p

3n\a D 1/2

~28!

whose contributions add to give

^Pup&n,sc5p21/2@3 n\3a~P2p!#21/4

3cosF 2

~na!1/2S P2p

3\ D 3/2

2
p

4 G . ~29!

RMs still contain one caustic atP5p, which can be easily
uniformized by evaluating integral~24! exactly, as in Sec. II
@8#,

^Pup&n,uni f5
1

~3 unua!1/3\
Ai S 2

~sgnn!~P2p!

~3unua!1/3\
D .

Having found^Pup&n , we can calculatêPup& from Eq.~23!
to all orders inl. ^Pup&1,sc and ^Pup&1,uni f agree very well
except for a small region nearp ~similarly as in Fig. 1!.
Figure 4 demonstrates the excellent agreement of the
method with the direct numerical computation of^Pup& us-
ing fast Fourier transform~IVR!.

Here the replacement-manifold approach should be c
pared to the semiclassical perturbation~SCP! approximation
of Miller and Smith @9,10# who used perturbative classica
dynamics to calculate the semiclassicalS matrix. They first
5-4
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applied this method to the collinear collision of an atom w
a diatomic molecule@9#. The starting point is the initial value
representation of the classical scattering matrix,

Snf ,ni
5

1

2pE0

2p

dqiF]qf~qi ,ni !

]qi
G1/2

3exp„i $F~qi ,ni !1qf~qi ,ni !@nf~qi ,ni !2nf #%…,

~30!

where\51,ni ,nf ,qi , qf denote, respectively, the initial an
final values of the action and angle variables describing
internal degree of freedom, andF is the action integral. For
details, see Refs.@2# and@9#. If the classical quantities listed
above are calculated using the first-order perturbation
namics, theS matrix takes the form

Snf ,ni
5

eiF0

2p E
0

2p

dqi exp$2 i @~nf2ni !qi1A~qi ,ni !#%,

whereF0 is twice the phase shift for the unperturbed pote
tial andA(qi ,ni) is the time integral of the perturbation po
tential along the unperturbed trajectory@9#. For various
physical systems~such as ion-dipole collisions@9# or atom-
surface scattering@10#!, A(qi ,ni) has a sinusoidal depen
dence onqi as long as perturbation remains small. In th
regime we expect the SCP and RM approximations to g
the same answer. We shall verify that for the scattering b
corrugated wall in Sec. VII. The SCP approximation
Miller and Smith presently appears to be more widely ap
cable since it does not require any special property of
manifold. On the other hand, the advantage of the R
method lies in the fact that it is not subjected to the smalln
of perturbation. Provided that thefull action falls into one of
the classes discussed above, we can apply the RM me
without approximating classical dynamics.

V. MODEL OF HOMOCLINIC OSCILLATIONS

Homoclinic oscillations in chaotic systems have anot
characteristic property: the amplitude of oscillations~i.e.,
‘‘height’’ of loops! increases exponentially as we approa
an unstable periodic orbit~see Fig. 5!.

To keep the area of loops constant, the width of loops
to decrease accordingly. Because systems in nature are
ally bounded, the exponentially growing loops must even
ally twist in a complicated way to fit into available pha
space. For the sake of simplicity, we consider a model
satisfies the requirement of exponential growth, but is
bounded. Such a model can be found among the genera

FIG. 4. Momentum wave function: comparison of numeric
IVR ~solid line! with the RM sum up tounu51 @O(l), dashed line#
for the original manifold withj(Q)5aQ3, l50.5, anda51.
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manifolds of the preceding section. Specifically, we want
find a manifold whose homoclinic points~i.e., intersections
with line P5p in our case! form a geometric series,

Qn5aenl1, ~31!

wherel1 is the Lyapunov exponent. In other words, we a
looking for a functionj(Q) such thatj(Qn)52pn. The
logarithmic function comes to mind first since log(Qn /a)
5nl1 . With the correct prefactora52p/l1 , we find the
desired function

j~Q!5a log
Q

a
~32!

becausej(Qn)5a log(Qn /a)5(2p/l1)nl152pn. Substitut-
ing j(Q) from Eq.~32! into the general form~17!, we obtain
a manifold described by

P5p2
1

2

\la

Q
cosS a log

Q

a D ~33!

and displayed in Fig. 5. Replacement manifolds~19! become

Pn~Q!5p1
n\a

Q
. ~34!

In the present case, functionf n from Eq. ~27! becomes

f n~Q,P,p!5~p2P!Q1n\a log
Q

a
,

and its single SP point,

Qsp5
n\a

P2p
. ~35!

For P.p, only manifolds withn.0 contribute, and forP
,p only n,0 is allowed. Definingj 5unu, for PÞp we
replace the sum overn by sum over all positivej. In both
cases, thej th manifold gives a semiclassical contribution

^Pup& j ,sc5S j a

2p D 1/2 1

uP2pu
expH i sgn~P2p!

3F j a log
j \a

aeuP2pu
2

p

4 G J ~36!

with j 5unu.0. In this case caustics are missing becau
there is a single SP pointQsp . We have a finite integration

l

FIG. 5. Original~solid line! and replacement manifolds~dashed
lines! for j(Q)5a log(Q/a), l50.5.
5-5
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limit at zero, but it is separated fromQsp by an infinite action
~equal to the area delimited by linesQ50, P5p, and the
nth RM, see Fig. 5!. In fact, it can be shown that furthe
terms in asymptotic expansion of^Pup& j ,sc have the same
dependence on\ and P2p as Eq.~36!, and only differ in
their dependence onj a. Luckily, these claims can be easi
verified by evaluating integral~24! analytically, which is
done in the Appendix.

In Fig. 6 the replacement-manifold expansion of^Pup& is
applied to an initial Gaussian wave packet centered aro
q0 , p0, namely,

f i~p!5S s2

p\2D 1/4

expF i

\
~p02p!q02

s2~p2p0!2

2\2 G .

The final position wave function is

csc
f ~Q!5~ps2!21/4expF2

i

\
F3~p0 ,Q!2

~Q2q0!2

2s2 G
and the uniform momentum wave function,

funi f
f ~P!5J0S l

2Df i~P!1
~2p\!1/2

~ps2!1/4

3(
j 51

`

Jj S l

2D i j^Pup0& j ,sc expF2
~Qsp, j2q0!2

2s2 G
~37!

with Qsp, j5 j \a/uP2p0u and ^Pup0& j ,sc given by Eq.~36!.
The large oscillation nearP5p0 in Fig. 6 corresponds to

the zeroth RM contributionf i(P); the smaller wavelet to the
right corresponds to the remaining RMs. The figure confir
the excellent accord between the RM method and the
merical IVR evaluation by fast Fourier transform~FFT! @11#.
We have thus succeeded in uniformizing something w
many of the properties of homoclinic oscillations near
unstable periodic orbit using replacement-manifold ‘‘tec
nology.’’

FIG. 6. Momentum wave function: comparison of numeric
IVR ~solid line! with the RM sum up toj 51 @O(l), dashed line#
for the original manifold withj(Q)5a log(Q/a), l50.5, anda
'33.
02621
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VI. COMPARISON WITH THE STATIONARY-PHASE
METHOD

It is instructive to check explicitly if the expansion i
terms of RMs agrees with the semiclassical method app
to the original manifold when areas of loops are larger tha\
(l.1). Let us choose an analytically solvable example w
j(Q)5aQ. The corresponding manifold

P~Q!5p2
1

2
\la sinaQ ~38!

has another advantage compared to manifolds in Figs. 3
5. Unlike those, forl@1 and small enoughP2p, manifold
~38! has all caustics in a safe distance. The RMs are horiz
tal lines Pn5p1n\a, independent ofQ and corresponding
transformation elements can be evaluated exactly as^Pup&n
5d(P2p2n\a). Using Eq.~23!, the uniform expression
for ^Pup& is

^Pup&uni f5 (
n52`

`

JnS l

2D i n d~P2p2n\a!, ~39!

so the wave function is determined by its Fourier coefficie
an(l)5Jn(l/2) i n, which is natural since manifold~38! is
exactly periodic. Moreover, each RM contributes only to
single momentum (Pn). Put differently, we have calculate
the wave function for any specific momentum to all orders
l. Now let us find the semiclassical form of^Pup&. For a
given momentumP there is an infinite number of SP poin
QSP which occur in pairs (Xn ,Yn),

Xn5X01
2p

a
n, Yn5

p

a
2X01

2p

a
n, ~40!

whereX052(1/a)arcsin@2(P2p)/l\a#. Analogously to Eq.
~27!, the semiclassical transformation element for manifo
~38! is

^Pup&sc5
1

A2p\
(

n52`

` U ]2S

]Q2U
Q5Xn

21/2 H expF i

\
S~Xn!2 i

p

4 G
1expF i

\
S~Yn!1 i

p

4 G J ~41!

with

S~Q,P,p!52PQ2F3~p,Q!5~p2P! Q1
1

2
\l cosaQ.

Using Eqs.~40! and ~41! and definingr 5(P2p)/\a, we
get

^Pup&sc5
1

\a
F~l,r ! (

n52`

`

e2p inr , ~42!

where

l

5-6
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F~l,r !5A2

p
e2 ir p/2

3

cosH r S p

2
1arcsin

2r

l D1F S l

2D 2

2r 2G1/2

2
p

4 J
F S l

2D 2

2r 2G1/4 .

~43!

Employing the Poisson summation formula

(
n52`

`

e2p inr5 (
m52`

`

d~m2r !

and reverting toP5p1r\a, we obtain

^Pup&sc5
1

\a
F~l,r ! (

n52`

`

d~n2r !

5
1

\a (
n52`

`

F~l,n! d~n2r !

5 (
n52`

`

F~l,n! d~P2p2n\a!. ~44!

Comparing Eq.~44! with Eq. ~39!, we see that the semiclas
sical and uniform versions of̂Pup& will be asymptotically
equal if F(l,n);Jn(l/2) i n for largel. That is indeed true
since forl@n2,

F~l,n!;S 2

p
l

2
D 1/2

einp/2 cosS l

2
2

np

2
2

p

4 D;JnS l

2D i n.

~45!

Table I shows that forl510 semiclassical and RM values o
an differ by less than 0.02 up ton53. In the opposite limit,
for l,1, evena0 evaluated semiclassically is complete
off.

VII. SCATTERING FROM A CORRUGATED WALL

Let us apply the replacement-manifold method to a phy
cal problem generating loop structure in phase space. S
tering of a plane wave by a corrugated wall has exactly s
a property. This system has been used to model elastic
tering of atoms by solid surfaces~for review see@12#!.

TABLE I. Comparison of numerical, RM, and SP evaluations
coefficientsan of the momentum wave function forj(Q)5aQ, l
510.

n 0 1 2 3 4 5

uanu ~num.! 0.1776 0.3276 0.0466 0.3648 0.3912 0.26
uanu ~RM! 0.1776 0.3276 0.0466 0.3648 0.3912 0.26
uanu ~SP! 0.1704 0.3324 0.0343 0.3622 0.4312 `
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Consider a plane divided into two parts by a periodica
curved boundary consisting of the set of points with coor
nates related by

ỹ~x!5
«

b
sinbx, ~46!

whereb gives the spatial frequency of corrugation and« the
maximum slopedỹ/dx of the wall. A plane wave with mo-
mentum\k1 is incident from the upper half-plane at an ang
a1 from the y axis, so the incident wave vector isk1
5k (sina1,2cosa1). Classically, the wave reflects spec
larly from the curved boundary. The reflected rays are sho
in Fig. 7.

Notice also the clearly visible caustics, emanating in pa
from cusp singularities. The Poincare´ surface of section in
Fig. 8 displays the dependence of momentum componentp2x
of reflected rays on coordinatex at a given distancey2 from
x axis. We can see familiar loops with constant area a
predict the failure of a semiclassical approximation wh
this area gets smaller than\. The figure implicitly assumes
that classically only a single scattering event takes place
fore a ray leaves the wall permanently. If corrugation is de
enough («.«max, where«max,1), multiple scattering will
occur for any incident anglea1. The larger« gets~within the
range 0,«,«max), the smaller the maximum allowed inc
dent anglea1. Let us therefore consider a wall with ver
shallow corrugation («50.2) and a small angle of incidenc
(a150.2), a situation which classically allows only a sing
reflection. We also choose the incident-wave lengthl
52p/k to be 0.3 times the period of corrugation. The su
prising result we shall obtain below is that although the

f

FIG. 7. Ray picture for a two-dimensional scattering from
corrugated wall. Only reflected rays are shown.

FIG. 8. Original~solid line! and replacement manifolds~dashed
lines! on the Poincare´ surface of section aty254p/b.
5-7
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JIŘÍ VANÍ ČEK AND ERIC J. HELLER PHYSICAL REVIEW E64 026215
exist seven real Bragg peaks in the scattered wave, the s
classics break down while the single-scattering approxim
tion using replacement manifolds works with excellent ac
racy. Before applying the RM method, let us briefly menti
whatexactandsemiclassicalsolutions are used for compar
son.

The most direct, Rayleigh approach@13,14# to find exact
solution relies on expanding the scattered wave in Fou
modes

cscat~r !5
1

2p (
n52`

`

aneik2,n•r ~47!

and finding the coefficientsan so that the total wave function
vanishes along the boundary. Garcia and Cabrera@15# have
thoroughly compared merits of this and various other me
ods. The main issue is the solution’s convergence, wh
improves with decreasing corrugation parametere. However,
we can safely use the Rayleigh method since it has b
shown to converge fore,0.448 @16# and this regime over-
laps with the small-loop limit in which we are interested. T
resulting probability density is shown in Fig. 9.

The simple semiclassical wave function may be evalua
by tracing individual rays and employing the Van Vlec
propagator@17#. The action must be adjusted by corre
Maslov indices, corresponding to reflection from a hard w
and to passage through caustics@18#. A probability density

FIG. 9. Probability density plot for the exact quantum solutio
Plot of the RM solution is indistinguishable to the eye. For detai
comparison, see Fig. 11.

FIG. 10. Probability density plot for the semiclassical solution
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plot of the semiclassical wave function is shown in Fig. 1
Note the caustics, which clearly separate regions with o
three, and five contributions to the scattered wave. Betw
caustics, solution looks qualitatively the same as the ex
quantum analogue in Fig. 9. By looking at a surface of s
tion at y254p/b ~corresponding to the top edge of Fig. 1
where there are at least three contributions for anyx) in Fig.
8, we expect that semiclassical and quantum wave funct
should disagree everywhere. This guess is confirmed in
11.

The application of replacement manifolds is facilitated
the whole scattering problem is formulated using an ana
to the smooth-potential Lippmann-Schwinger equation.
voking the Green’s theorem, it can be shown that the to
wave function satisfies

uc tot&5uc inc&1Ĝ0E
boundary

dx ur & n̂~x!•“c tot~r !,

~48!

where uc inc& is the incident wave,Ĝ0 is the free-space
Green’s operator, andn̂(x) is a normal unit vector at the
boundary pointing into free space.

We find uc tot& in Eq. ~48! by proceeding in four steps
first we canonically transform the incident wave function to
new coordinate systemr 8 in which the wall becomes
straight. We solve the scattering problem in these coo
nates, since there the semiclassical approach is exact.
we transform back to the original coordinate system in wh
we propagate the wave using the free-space Green’s func
to obtain our final answer. The semiclassical approach
used for each separate step but their combination is evalu
exactly.

The wall becomes flat if we apply a canonical transform
tion

x85x, y85y2
«

b
sinbx

generated by

F3~k,r 8!52kxx82kyS y81
«

b
sinbx8D . ~49!

The incident wave functionc inc(k1) can be transformed into
new coordinates using

^r 8uk&sc5
1

2p
e2 iF 3(k,r8). ~50!

In primed coordinates, the semiclassical solution of scat
ing is exact and the ‘‘angle of incidence’’ equals the ‘‘ang
of reflection.’’ Thereforen̂8•“c tot(r 8) may be replaced by
2n̂8•“c inc(r 8) in Eq. ~48!. The nondiagonal part of the
semiclassical scattering matrix becomes

T̂5Ŝ21̂52E dx8 ur 8& n̂8•“8^r 8uuy850 , ~51!

.
d
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where n̂85 ŷ8. Transformation back to the original coord
nates is achieved by a complex conjugate of Eq.~50!. The
free-space propagation is accomplished by a semiclas
Green’s function, exact in mixed representation

^k2x ,y2uĜ0
scuk&5

d~k2x2kx!e
ikyy2

A2p~k22k2
21 i e!

. ~52!

Combining all four pieces, we obtain an expression for
scattered wave on a surface of section,

^k2x ,y2uĜ0
scT̂ uk1&52E d2kE dx8^k2x ,y2uĜ0

scuk&

3^kur 8& ]y8^r 8uk1&scuy850

5
2ik1y

~2p!5/2E d2k
d~k2x2kx!e

ikyy2

A2p~k22k2
21 i e!

3E dx8 expF i ~k1x2kx!x8

1 i ~k1y2ky!
«

b
sinbx8G . ~53!

Before we proceed, it should be noted that the outcom
this four-step process, an integral representation of the s
tered wave, can be viewed as a continuous superpositio
waves emanating from sources along the boundary, w
strength proportional to the normal derivative of the incide
wave. It can be shown, in fact, that this process is equiva
to a generalized Kirchhoff diffraction method@19#.

Returning to expression~53!, we recognize that the expo
nent in integral overx8 corresponds to a classical manifol

kx5k1x1~k1y2ky!« cosbx8, ~54!

which is ‘‘begging’’ to be replaced by partial manifold
kx,n5k1x1nbx8 with weightsJn(l) because

ulu5uk1y2kyu
«

b
&

2k«

b
,1

for the classically allowed momenta. The integral overx8 is
then simple to evaluate and is equal to

E dx8 (
n52`

`

Jn~l!exp@ i ~k1x1nb2kx! x8#

52p (
n52`

`

Jn~l!d~k1x1nb2kx!. ~55!

Using this result and evaluating the trivial integral overkx ,
expression~53! becomes

^k2x ,y2uĜ0
scT̂ uk1&5

2ik1y

~2p!3/2 (
n52`

` E dky

eikyy2

A2p~k22k2
21 i e!

3Jn~l!d~k2x2k2x,n!, ~56!
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wherek2x,n5k1x1nb. The integral overky picks up a pole
at ky5k2y,n5Ak22k2x,n

2 and the final answer is

^k2x ,y2uĜ0
scT̂ uk1&

5
k1y

A2p
(

n52`

`

eik2y,ny2
Jn~ln!d~k2x2k2x,n!

k2y,n
,

~57!

whereln5(k1y2k2y,n)(«/b). The uniform scattered wave
is in the form~47! of a superposition of traveling and eva
nescent waves with wave vectorsk2,n and coefficients

an,uni f5
k1y

k2y,n
Jn~ln!. ~58!

These turn out to be numerically very close to the coe
cients of the exact solution, but here we have avoided hav
to solve a truncated linear system, which was necessar
Rayleigh or other exact methods@14#.

A two-dimensional plot of probability density does n
reveal any difference from the exact quantum result in Fig
while an analogous semiclassical plot clearly shows caus
~see Fig. 10!. Even if we look at the Poincare´ surface of
section in a region with many classical caustics, the quan
and uniform solutions agree while the semiclassical solut
fails miserably~see Fig. 11!.

The uniform solution agrees with one found differently b
Garibaldiet al. @20# and is somewhat more accurate than t
same result without thek1y /k2y,n prefactor obtained by Hub
bard and Miller @10# by the semiclassical perturbation a
proximation. As Garibaldiet al. ~who obtain three different
solutions differing only by prefactors! point out, these pref-
actors ‘‘should not be taken too seriously.’’ We agree: f
traveling modes, they do not cause large errors, and sinc
these solutions neglect multiple scattering, we cannot exp
high accuracy of the already small coefficients of evanesc
modes.

Now we explain how semiclassical and single-scatter
regimes differ. As mentioned above, the single-scattering
proximation was guaranteed by the choice«!1, a!1. At
first, it appears that the simple semiclassical approxima
should be accurate for this regime of very shallow corru
tion, since scattering from a flat wall has an exact semic

FIG. 11. Wave function on the surface of section aty54p/b.
Comparison of the exact quantum~dashed line!, RM ~solid line!,
and semiclassical~dotted line! wave functions.
5-9
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sical answer. The correct criterion, however, is based on
area of loops in phase space~see Fig. 8!. In this case, for
small « and a, the height of the loops is equal to the m
mentum kick in the region of maximum slope, approximate
p«, and the width is half the period of corrugation,p/b. The
loop area is smaller thanp«(p/b)5pkd\ (d is the depth of
corrugation! and has to be compared to\. We arrive at a
surprising result that the validity of the semiclassical a
proximation is unrelated to the periodicity of corrugation, b
only depends on the product of the wave vector and co
gation depth. If this product is small, the semiclassical
proximation breaks down. It works in the opposite case,
though we might have to take into account classi
trajectories corresponding to multiple scattering ife>1.

It would be interesting to see in detail how uniform a
semiclassical solutions get closer when bothkd@1 and e
!1. While this could be shown explicitly, as in Sec. VI, b
evaluating integrals in Eq.~53! by the SP method, Berry an
Bodenschatz demonstrate the agreement for a similar p
lem of waves propagating normally from a sinusoidal wa
front @21# using the Talbot interference effect@22#.

Finally, we remark that even in less fortunate situatio
when it is impossible to obtain analytical integrals for RM
we can quite generally expect the replacement manifold
be much smoother than the original one, enabling th
simple evaluation by the SP method.

VIII. CONCLUSION

We have successfully uniformized several intimidati
situations that can arise when repeated small areas or l
arise from enclosing classical manifolds using t
replacement-manifold idea. This notion can rejuven
physical intuition about the quantum wave function and a
be a very convenient approach to an accurate result.
physically motivated cases were considered~the homoclini-
clike oscillation and the corrugated wall! along with several
other contrived cases to test the method. The present me
should work in more complicated time-dependent proble
if used with Miller’s IVR applied to Van Vleck’s semiclass
cal propagator. After replacement manifolds are identifi
the perturbative expansion contributions to the wave func
could be found by the SP approximation applied to th
manifolds.

Future work along these lines includes the attempt to u
formize a full homoclinic tangle. It remains to be seen ho
convenient and generally applicable the replacement m
fold idea is. However, it seems clear that we now hav
method which simplifies many problems while reinstating
intuitive foundation.
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APPENDIX: EXACT EVALUATION OF A SINGLE
REPLACEMENT MANIFOLD FOR THE MODEL

OF HOMOCLINIC OSCILLATIONS

The oscillatory integral~24! with j(Q)5a log(Q/a) is
made convergent by displacing momentumP with an imagi-
nary infinitesimal term2 i e, e.0,

^Pup&n,uni f5
1

2p\E0

`

dQ expH i

\ F2~P2 i e2p!Q

1n\a log
Q

a G J . ~A1!

In this form, the answer is found by rotating the conto
about the origin of complex plane by2(p/2)sgn(P2p).

Let us explicitly solve the caseP.p. Figure 12 shows a
contour in a complex plane enclosing a region with no s
gularities, and as a result the sum of integrals along app
priate parts of the contour is zero,I 11I R1I 21I r50. In the
limit R→`, r→0, I 1 becomes our desired integral~A1! and
both I R and I r vanish, implyingI 152I 2. Contour for inte-
gral I 2 is the set of complex pointsz52 ix5e2 ip/2x, x.0.
Consequently,

2I 25
1

2p\
e2 ip/2E

0

`

dx expH i

\ F2~P2p2 i e!~2 ix !

1n\a log
xe2 ip/2

a G J . ~A2!

Transforming to a dimensionless variabley5(P2p
2 i e)x/\, the integral becomes

2I 25
1

2p\
expH ~na2 i !

p

2
2 ina log@~P2p2 i e!a/\#J

3
\

P2p2 i eE0

`

dy e2yyina.

FIG. 12. Contour for evaluation of̂Pup&n,uni f in the case
j(Q)5a log(Q/a).
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Recognizing the remaining integral as aG function of the
complex argument 11 ina,

2I 25
G~11 ina!

2p~P2p2 i e!
expH ~na2 i !

p

2

2 ina log@~P2p2 i e!a/\#J . ~A3!

For P,p, we need to close the contour in the upper ha
plane, but otherwise the procedure is analogous. Combi
the two cases, we obtain a single analytic expression for
uniform transformation element,
ss
be
e
ng
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^Pup&n,uni f5
G~11 ina!

2p~ uP2pu2 ise!
expF ~na2 i !

p

2
s

2 ina log
~ uP2pu2 ise!a

\ G , ~A4!

where s5sgn(P2p). As promised, the uniform~A4! and
semiclassical~36! forms have identical dependence on\ and
P2p. The only difference lies in the dependence onna, in
particular the semiclassical form is obtained if we keep o
the first term in the asymptotic expansion ofG(11 ina) in
^Pup&n,uni f . However, for our conservative choice ofa
'33 the agreement between^Pup&n,sc and ^Pup&n,uni f is
such that they may be used interchangeably for any prac
purposes.
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representation in three dimensions!

c~r2!5E
C
dsS c

]

]n
H1

(0)~kR!2H1
(0)~kR!

]c

]n D ,

whereR5ur22r u, r is the coordinate vector of points on th
closed curveC, and]/]n is the derivative in the direction of an

outwardpointing normal vectorn̂. For the derivation of Weber
and Helmholtz representations, see, e.g., B. B. Baker and E
Copson,The Mathematical Theory of Huygens’ Principle, 2nd
ed. ~Oxford University Press, London, 1950!, p. 48; M. Born
and E. Wolf, Principles of Optics, 6th ed.~Pergamon Press
Elmsford, NY, 1980!, p. 375. The Kirchhoff method consists o
approximating usually unknown values ofc and]c/]n in the
integrand. Originally, it was only used in the case of a pla
screen with an aperture: Kirchhoff setc and ]c/]n equal to
zero on the dark side of the screen and equal to the un
turbed values (c inc and ]c inc /]n) in the aperture. The term
‘‘Kirchhoff method’’ is now sometimes used for a more ge
eral approximation encompassing our example of the co
gated wall, wherebyc and]c/]n at any point of the surface
are approximated by the values that would be present on
tangent plane at that point. See, e.g.,The Scattering of Elec-
tromagnetic Waves from Rough Surfaces, Ref. @14#, p. 20.
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Surf. Sci.48, 649 ~1975!.

@21# M. V. Berry and E. Bodenschatz, J. Mod. Opt.46, 349~1999!.
@22# This remarkable effect appears also in our case~for cscat only!

whenk1x50: Note that then the paraxial approximation

k2y,n5Ak22~bn!2'k2
b2n2

2k
~A5!

~valid for e!1) implies that the scattered wave in both th
exact and RM solutions has the property

cscatSx2
p

b
,y1yTD5cscat~x,y!eikyT, ~A6!

whereyT52pk/b2 is the Talbot distance.
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