538 research outputs found

    Sensoryneural hearing loss with predominantly fall in 2000Hz secondary to connexin 26 gene mutation

    Get PDF
    [ES] Las mutaciones en el gen de la conexina 26 dan lugar a hipoacusia neurosensorial prelocutiva de inicio en la infancia, habitualmente de carácter severo/profundo, aunque se han descrito hipoacusias leves o moderadas con algunas mutaciones.Se describe el caso clínico de una niña con una hipoacusia con caída predominantemente en 2000Hz que presentaba una mutación bialélica del gen de la conexina 26 (M34T/N206S). Tras una revisión de la literatura y los hallazgos del caso descrito podemos concluir que los pacientes con hipoacusia neurosensorial prelocutiva con predominio en la frecuencia 2000 Hz precisan descartar la presencia de mutaciones en el gen de la conexina 26, concretamente la mutación M34T. [EN] Mutations in the connexin 26 gene result in prelocutive sensorineural hearing loss beginning in childhood, usually severe or profound, although it have been reported slight to moderate hearing loss with some mutations. We present the case of a girl who had a hearing loss with predominantly fall in 2000Hz presenting a biallelic mutation in the connexin 26 gene (M34T/N206S). After a review of the findings of our case and in the medical literature we can conclude that patients with prelocutive sensorineural hearing loss in the frequency 2000 Hz require to rule out mutations in the connexin 26 gene like the M34T

    Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB

    Get PDF
    We present results of a dark matter search performed with a 0.6 kg day exposure of the DAMIC experiment at the SNOLAB underground laboratory. We measure the energy spectrum of ionization events in the bulk silicon of charge-coupled devices down to a signal of 60 eV electron equivalent. The data are consistent with radiogenic backgrounds, and constraints on the spin-independent WIMP-nucleon elastic-scattering cross section are accordingly placed. A region of parameter space relevant to the potential signal from the CDMS-II Si experiment is excluded using the same target for the first time. This result obtained with a limited exposure demonstrates the potential to explore the low-mass WIMP region (<10 GeV/c2c^{2}) of the upcoming DAMIC100, a 100 g detector currently being installed in SNOLAB.Comment: 11 pages, 11 figure

    One-step in vitro generation of ETV2-null pig embryos

    Get PDF
    Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor ETV2 via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine ETV2 gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 8080^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×1051.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×1032.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    La Ingeniería Automotriz clave para el desarrollo sostenible de Ecuador

    Get PDF
    El presente texto es una contribución al desarrollo de la sostenibilidad ecuatoriana y mantiene el debate sobre temas del estudio de la Ingeniería Automotriz. El mérito del libro radica en una triple condición: alimenta la investigación académica ecuatoriana, contribuye a llenar el vacío de producción científica automotriz direccionada a las necesidades del Ecuador y reconoce el esfuerzo de los investigadores que se dedican a la producción académica técnica. La Universidad Politécnica Salesiana —en su sede Guayaquil— realizó en 2018, las Segundas Jornadas Científicas de Ingeniería Automotriz; este texto es el producto final de ese evento académico, cuyas memorias técnicas son constituidas por ocho resultados de investigaciones en Ingeniería Automotriz que aportarán desarrollo sostenible al Ecuador en áreas como: el diseño, el control de contaminación, la eficiencia energética y la movilidad. Este recorrido por varias ramas de la Ingeniería Automotriz muestra al lector múltiples aplicaciones y cambios de paradigmas en la industria; no somos solamente consumidores de tecnología, somos también productores de la misma. Este texto da cuenta del desarrollo de la industria automotriz ecuatoriana. Ing. Renato Fierro J. MSc

    Erratum: Search for photons with energies above 1018^{18} eV using the hybrid detector of the Pierre Auger Observatory

    Get PDF
    A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1 - 2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.038, 0.010, 0.009, 0.008 and 0.007 km2^{-2} sr1^{-1} yr1^{-1} are derived at 95% C.L. for energy thresholds of 1, 2, 3, 5 and 10 EeV. These limits bound the fractions of photons in the all-particle integral flux below 0.14%, 0.17%, 0.42%, 0.86% and 2.9%. For the first time the photon fraction at EeV energies is constrained at the sub-percent level. The improved limits are below the flux of diffuse photons predicted by some astrophysical scenarios for cosmogenic photon production. The new results rule-out the early top-down models - in which ultra-high energy cosmic rays are produced by, e.g., the decay of super-massive particles - and challenge the most recent super-heavy dark matter models.Comment: Corrected version after erratum published in JCA
    corecore