54 research outputs found

    RLE Edit Distance in Near Optimal Time

    Get PDF
    We show that the edit distance between two run-length encoded strings of compressed lengths m and n respectively, can be computed in O(mn log(mn)) time. This improves the previous record by a factor of O(n/log(mn)). The running time of our algorithm is within subpolynomial factors of being optimal, subject to the standard SETH-hardness assumption. This effectively closes a line of algorithmic research first started in 1993

    Broadcasting on Large Scale Heterogeneous Platforms with connectivity artifacts under the Bounded Multi-Port Model

    Get PDF
    International audienceWe consider the classical problem of broadcasting a large message at an optimal rate in a large scale distributed network. The main novelty of our approach is that we consider that the set of participating nodes can be split into two parts: "green" nodes that stay in the open-Internet and "red" nodes that lie behind firewalls or NATs. Two red nodes cannot communicate directly, but rather need to use a green node as a gateway for transmitting a message. In this context, we are interested in both maximizing the throughput (\ie the rate at which nodes receive the message) and minimizing the degree at the participating nodes, \ie the number of TCP connections they must handle simultaneously. We both consider cyclic and acyclic solutions for the flow graph. In the cyclic case, our main contributions are a closed form formula for the optimal cyclic throughput and the proof that the optimal solution may require arbitrarily large degrees. In the acyclic case, we prove that it is possible to achieve the optimal throughput with low degree. Then, we prove a worst case ratio between the optimal acyclic and cyclic throughput and show through simulations that this ratio is on average very close to 1, which makes acyclic solutions efficient both in terms of the throughput and the number of connections

    What are the evolutionary constraints on larval growth in a trophically transmitted parasite?

    Get PDF
    For organisms with a complex life cycle, a large larval size is generally beneficial, but it may come at the expense of prolonged development. Individuals that grow fast may avoid this tradeoff and switch habitats at both a larger size and younger age. A fast growth rate itself can be costly, however, as it requires greater resource intake. For parasites, fast larval growth is assumed to increase the likelihood of host death before transmission to the next host occurs. Using the tapeworm Schistocephalus solidus in its copepod first intermediate host, I investigated potential constraints in the parasite’s larval life history. Fast-growing parasites developed infectivity earlier, indicating there is no functional tradeoff between size and developmental time. There was significant growth variation among full-sib worm families, but fast-growing sibships were not characterized by lower host survival or more predation-risky host behavior. Parental investment also had little effect on larval growth rates. The commonly assumed constraints on larval growth and development were not observed in this system, so it remains unclear what prevents worms from exploiting their intermediate hosts more aggressively

    Substituent and Solvent effects on the Nature of the Transitions of Pyrenol and Pyranine. Identification of an Intermediate in the Excited-State proton-Transfer Reaction

    No full text
    A comparative study of pyrenol and its trisulfonated derivative, pyranine, is undertaken to provide new clues for the understanding of the excited-state proton-transfer reaction (ESPT) of hydroxyarenes (ArOH*). A particular goal is to elucidate the nature of a transient intermediate involved in a three step mechanism of ESPT, as recently revealed in a dynamical study of excited pyranine in water. The present focus is on the reactant side, before the proton transfer occurs, and particular attention is given to the analysis of the nature of the electronic transitions and to the solute-solvent interactions in the ground and excited states of the ArOHs. Using both quantum chemical calculations and solvatochromism analyses, both (a) the role of electron-withdrawing substituents and H-bond interaction with the solvent in stabilizing the two lowest excited states, 1Lb and 1La, and (b) their relevance to the inversion of these two states are studied. The results allow the identification of the intermediate species in the three step mechanism of the ESPT of excited pyranine in water as a 1La state acid form, with appreciable charge-transfer character, as distinct from the 1Lb acid form reached in absorption. The results, which differ from more standard pictures of ESPT, are discussed within the perspective of a three valence bond form model for the ESPT process

    Broadcasting on Large Scale Heterogeneous Platforms with Connectivity Artifacts under the Bounded Multi-port Model

    No full text
    International audienceWe consider the classical problem of broadcasting a large message at an optimal rate in a large scale distributed network. The main novelty of our approach is that we consider that the set of participating nodes can be split into two parts: "green" nodes that stay in the open-Internet and "red" nodes that lie behind firewalls or NATs. Two red nodes cannot communicate directly, but rather need to use a green node as a gateway for transmitting a message. In this context, we are interested in both maximizing the throughput (\ie the rate at which nodes receive the message) and minimizing the degree at the participating nodes, \ie the number of TCP connections they must handle simultaneously. We both consider cyclic and acyclic solutions for the flow graph. In the cyclic case, our main contributions are a closed form formula for the optimal cyclic throughput and the proof that the optimal solution may require arbitrarily large degrees. In the acyclic case, we prove that it is possible to achieve the optimal throughput with low degree. Then, we prove a worst case ratio between the optimal acyclic and cyclic throughput and show through simulations that this ratio is on average very close to 1, which makes acyclic solutions efficient both in terms of the throughput and the number of connections

    Alpha-Particle Induced Soft-Error Rate in CMOS 130 nm SRAM

    No full text
    2010 Conference on Radiation and its Effects on Components and Systems (RADECS), Langenfeld, GERMANY, SEP 20-24, 2010International audienceWe report the modeling and simulation of the soft-error rate (SER) in CMOS 130 nm SRAM induced by alpha-particle emission in silicon due to uranium contamination at ppb concentration levels. Monte-Carlo simulation results have been confronted to experimental data obtained from long-duration (>20 000 h) real-time measurements performed at the under-ground laboratory of Modane (LSM) and from experimental counting characterization using an ultra low background alpha-particle gas proportional counter. The calibration of simulations with the measured SER allowed us to determine a U-238 contamination level of 0.37 ppb (considered at secular equilibrium) in very good agreement with both corresponding alpha-particle emissivity levels measured and simulated at wafer-level in the range 1.1 to 2.3 x 10(-3) alpha/cm(2)/h

    Geant4 Analysis of n-Si Nuclear Reactions From Different Sources of Neutrons and Its Implication on Soft-Error Rate

    No full text
    Conference on Radiation Effects on Components and Systems (RADECS)/Radiation Effects Data Workshop, Univ Sevilla, Escuela Super Ingenieros, Seville, SPAIN, SEP 19-23, 2011International audienceThis work examines nuclear events resulting from the interaction of atmospheric neutrons at ground level and different atmospheric-like sources with a silicon layer. Using extensive Geant4 simulations and in-depth data analysis, this study provides a detailed comparison between several facilities and natural environment in terms of nuclear processes, secondary ion production and fragment energy distribution. The different computed databases have been used in a second part of this work to estimate the Soft-Error Rate (SER) of a widely characterized 65 nm SRAM test circuit with the Tool suIte for rAdiation Reliability Assessment (TIARA Monte-Carlo simulation code). A detailed analysis is conducted to clarify the mechanisms leading to single and multiple cell upsets and to estimate the SER of a broad spectrum source from values obtained with monoenergetic simulations
    corecore