
RLE Edit Distance in Near Optimal Time
Raphaël Clifford
Department of Computer Science, University of Bristol, UK
Raphael.Clifford@bristol.ac.uk

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Tomasz Kociumaka
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
Institute of Informatics, University of Warsaw, Poland
kociumaka@mimuw.edu.pl

Daniel P. Martin1

The Alan Turing Institute, British Library, London, UK
dmartin@turing.ac.uk

Przemysław Uznański
Institute of Computer Science, University of Wrocław, Poland
puznanski@cs.uni.wroc.pl

Abstract
We show that the edit distance between two run-length encoded strings of compressed lengths m

and n respectively, can be computed in O(mn log(mn)) time. This improves the previous record by
a factor of O(n/ log(mn)). The running time of our algorithm is within subpolynomial factors of
being optimal, subject to the standard SETH-hardness assumption. This effectively closes a line of
algorithmic research first started in 1993.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Data structures design and analysis

Keywords and phrases String algorithms, Compression, Pattern matching, Run-length encoding

Digital Object Identifier 10.4230/LIPIcs.MFCS.2019.66

Funding Tomasz Kociumaka: Supported by ISF grants no. 824/17 and 1278/16 and by an ERC
grant MPM under the EU’s Horizon 2020 Research and Innovation Programme (grant no. 683064).

1 Introduction

The edit distance is one of the most common distance measures between strings. For two
strings of length M and N respectively, the edit distance counts the minimum number of
single character insertions, deletions and substitutions needed to transform one string into
the other. The first record of an O(MN) algorithm to compute the edit distance is from
1968 [14] although it was rediscovered independently a number of times subsequently. Masek
and Paterson improved the running time to O(MN/ logN), for N ≥M , in 1980 and this is
the fastest known algorithm to date [12]. Much more recently it has been shown that no
O(MN1−ε) time edit distance algorithm can exist, subject to the strong exponential time
hypothesis (SETH) [4, 5]. As a result, it is likely that little further progress can be made in
terms of improving its worst case complexity.

1 Research carried out while the author was a member of the University of Bristol and the Heilbronn
Institute for Mathematical Research.

© Raphaël Clifford, Paweł Gawrychowski, Tomasz Kociumaka, Daniel P. Martin, and Przemysław
Uznański;
licensed under Creative Commons License CC-BY

44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019).
Editors: Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen; Article No. 66; pp. 66:1–66:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/225315657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0003-0599-0915
mailto:Raphael.Clifford@bristol.ac.uk
https://orcid.org/0000-0002-6993-5440
mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-2477-1702
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0003-0417-1635
mailto:dmartin@turing.ac.uk
https://orcid.org/0000-0002-8652-0490
mailto:puznanski@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.MFCS.2019.66
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 RLE Edit Distance in Near Optimal Time

In this paper we focus on the problem of computing the edit distance between two
compressed strings. The run-length encoding (RLE) of a string compresses consecutive
identical symbols into a run, denoted σi if the symbol σ is repeated i times. For example
aaabbbbaaa would be compressed to a3b4a3. This form of compression is commonly used
for image compression but also has wider applications including, for example, in image
processing [9, 15] and succinct data structures [11].

In 1993 Bunke and Csirik proposed the first algorithm for computing the edit distance
between RLE strings. For two strings of RLE-compressed lengths m and n respectively, their
algorithm runs in O(mn) time in the special case where all the runs are of the same length [6].
However the running time falls back to the naive complexity of O(MN) time in the worst
case where M and N are the uncompressed lengths of the two strings. This worst case
complexity was subsequently improved to O(Nm+Mn) [3, 7] and then O(min{Nm,Mn})
time in 2007 [10]. Finally in 2013 the fastest solution prior to this current work was given
running in O(mn2) time, where n ≥ m [8]. This was the also the first algorithm for the RLE
edit distance problem whose running time did not depend on the uncompressed lengths of
the input strings.

For uncompressed strings, the longest common subsequence (LCS) problem has long
been considered a close relative of the edit distance problem. This is partly due to the
similarity of their dynamic programming solutions and partly because LCS is a special case
of edit distance when general costs are allowed for the different mismatch and substitution
operations. Moreover, the two problems have the same quadratic time upper bounds and
SETH-hardness lower bounds [5]. Somewhat surprisingly, however, the history of algorithms
for LCS and edit distance have not mirrored each other when the problems are considered
on RLE strings. In particular, an O(mn log(mn)) time algorithm for computing the LCS on
RLE strings was given in 1999 [2] which is considerably faster than has been possible up
to this point for the edit distance problem. Some work has also been carried out since that
date to improve the log factor in the running time complexity for the LCS problem [1,13].

In this paper we speed up the running time for the edit distance problem on RLE strings
by a factor of O(n/ log(mn)), matching the fastest LCS algorithm to within a logarithmic
factor and making it within subpolynomial factors of being optimal, assuming SETH holds.
As a result, our new algorithm shows that the LCS and edit distance problems are indeed of
essentially the same complexity even when the input strings are run-length encoded. This
effectively closes a line of algorithmic research first started in 1993.

I Theorem 1. Given two RLE strings of compressed length n and m respectively, there
exists an algorithm to compute their edit distance which runs in O(mn log(mn)) time.

2 Previous Work and Preliminaries

The classic dynamic programming solution for computing the edit distance between un-
compressed strings X and Y of uncompressed lengths M and N respectively, computes the
distance between all prefixes X[1, . . . , i] and Y [1, . . . , j]. The key recurrence which enables
us to do this efficiently is given by:

ED(i, j) = min(ED(i− 1, j − 1) + δ(Xi 6= Yj),ED(i− 1, j) + 1,ED(i, j − 1) + 1).

From this the classic O(MN) time solution follows directly.
The previous approaches for the edit distance problem on RLE strings take this recur-

rence and the implied dynamic programming table as their starting point. The basic idea
was introduced by Bunke and Csirk [6] whose algorithm works by dividing the dynamic
programming table into “blocks”, where each block is defined by a run in the original strings.

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:3

For each block the central task is to compute its bottom row and rightmost column given
the bottom row of the block above and the rightmost column of the block to the left. For
simplicity of terminology, we will refer to the rightmost column of the block to the left and
the bottom row of the block above collectively as the input border of a block and the bottom
row and rightmost column of a block as its output border. Figure 1 illustrates an example.

In [3, 7] it was shown that the work needed to derive the values of all the output borders
of blocks is at most linear in their length. When computing the edit distance between strings
X and Y , the length of each row in the dynamic programming table is the uncompressed
length of string Y and the length of each column is the uncompressed length of X. If there
are m runs in string X and n runs in Y then the total time complexity for computing the
edit distance using their approach is therefore O(Nm+Mn).

The work closest to ours is the O(mn2) algorithm of Chen and Chao [8]. They observe
that the borders of the blocks in the dynamic programming table are piecewise linear with
gradient ±1 or 0. The borders can be therefore concisely represented by specifying their
starting values as well as the positions and types of the points of changing gradient called
the turning points. They prove that for a given block the number of turning points in
an output border is at most a constant greater than in its input border. Consequently, a
simple calculation shows that the total number of turning points is O(mn2) (for m ≤ n).
Chen and Chao arrive at their final complexity by designing a procedure that computes the
representation of the output border of a block, given the representation of its input border,
in time proportional to the number of turning points. We now summarise their approach
using our own notation.

There are two distinct types of blocks in the dynamic programming table. A match
block corresponds to a rectangle where the corresponding symbols in the two strings match.
A mismatch block corresponds to a rectangle where the corresponding symbols mismatch.
Figure 1 shows both match and mismatch blocks. Borrowing notation from [8] we say that
element (i, j) of the dynamic programming table ED is in diagonal j − i. Let (id, jd) be the
intersection of the input border with diagonal j − i.

I Lemma 2 ([8, Lemma 1]). For a match block, ED(i, j) = ED(id, jd).

Lemma 2 indicates that for a match block we can simply copy the values from the
corresponding position in the input border to derive the values of the output border. The
main challenge is therefore how to handle mismatch blocks.

a

b

a

a b a b

Figure 1 Match blocks are in grey. The thick line is for an input border and the dotted line an
output border. The input border is contained entirely inside the neighbouring match blocks.

MFCS 2019

66:4 RLE Edit Distance in Near Optimal Time

For mismatch blocks Chen and Chao’s algorithm, in a similar manner to previous RLE
edit distance algorithms, splits the problem into two parts corresponding to shortest paths
that pass through the leftmost column or the top row [3,6–8]. Consider a mismatch block
of height h and width w corresponding to runs ah−1 and bw−1 such that h ≤ w (the other
case can be processed similarly by swapping the left and the top part of the input border).
LEFT[1, h] and TOP[1, w] denotes the values of the left and the top part of the input border,
numbered in a bottom-to-top and a left-to-right direction, respectively. For an array S[1, n]
and a parameter h ∈ Z+, let S(h)[i] = min{S[j] | i− h+ 1 ≤ j ≤ i, 1 ≤ j ≤ n}. Chen and
Chao separately compute all the output border values that are derived from a value in the
left part of the input border, denoted OUTLEFT[1, w + h − 1], and similarly compute all
the output border values that are derived from a value in the top part of the input border,
denoted OUTTOP[1, w + h− 1], as follows.

OUTLEFT[i] =

LEFT(h)[i] + i− 1 for i ∈ [1, h];
LEFT(h)[h] + i− 1 for i ∈ [h,w];
LEFT(h)[i− w + h] + w − 1 for i ∈ [w,w + h− 1];

(1)

OUTTOP[i] =
{

TOP(h)[i] + h− 1 for i ∈ [1, w];
TOP(h)[i] + w + h− 1− i for i ∈ [w,w + h− 1].

(2)

We start with reformulating the algorithmic framework of Chen and Chao using the
following notation.

I Definition 3. Let S[1, n] be a 1-indexed array of length n.
For a parameter h ∈ Z+, SWM(S, h) (Sliding Window Minima) returns the array S(h) of
length n+ h− 1.
split(S,m) returns the two subarrays S[1,m], and S[m+ 1, n].
S±−→1 returns S with the gradient decreased/increased by one, or formally S′[i] = S[i]± i.
For an integer constant c, S + c returns S with every value increased by c.
initialise(`) returns an array of length ` initially filled with zeroes.
join(S1, S2) simply concatenates two arrays.

Now, equations (1) and (2) can be rephrased as Algorithms 1 and 2, respectively. The
final step of the algorithm is to compute the output border as the minimum of OUTTOP[i]
and OUTLEFT[i] for each index i. This is performed in linear time per block by Chen and
Chao [8]. In Section 3 we will design a new implementation of both algorithms and a subtle
amortised argument for this final step. The latter is based on the fundamental property of
the values in an output border summarised by Lemma 4.

I Lemma 4 ([8, Lemma 7]). If there exists an i such that OUTTOP[i] ≤ OUTLEFT[i], then
OUTTOP[j] ≤ OUTLEFT[j] for all j ≥ i.

Algorithm 1 Compute the shortest path passing through the left border.

1 S ← SWMh(LEFT[1, h], h);
2 S`, Sr ← split(S, h);
3 S1 ← S` +−→1 − 1;
4 S2 ← initialise(w − h) +−→1 + S[h] + h− 1;
5 S3 ← Sr + w − 1;
6 OUTLEFT ← join(join(S1, S2), S3);

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:5

Algorithm 2 Compute the shortest path passing through the top border.

1 S ← SWMh(TOP[1, w], h);
2 S`, Sr ← split(S,w);
3 S1 ← S` + h− 1;
4 S2 ← Sr −−→1 + w + h− 1;
5 OUTTOP ← join(S1, S2);

Before we go on to explain how we speed up the task of deriving the borders of blocks,
it is worth exploring for a moment why we cannot simply apply, perhaps with some small
modifications, the known O(mn log(mn)) time solution for LCS on RLE strings [2]. The key
obstacle comes from the different nature of optimal paths in the dynamic programming table
of the LCS and edit distance problems.

For the LCS problem on RLE strings Apostolico et al. [2] introduced two important
concepts. The first is forced paths and the second corner paths. They say that a path
beginning at the upper-left corner of a match block is forced if it traverses the block by
strictly diagonal moves and, whenever the right (respectively, lower) side of an intermediate
match block is reached, proceeds to the next match block by a straight horizontal (respectively,
vertical) line through the mismatch blocks in between. A corner path is one that enters
match blocks in the top left corner and exits only through the bottom right corner. They
show that there is always a longest common subsequence between two strings corresponding
to the concatenation of subpaths of corner and forced paths. This fact greatly reduces the
number of different paths that have to be considered and hence the complexity of solving the
overall LCS problem. However for the edit distance problem this property of forced paths
no longer holds. Figures 2 and 3 show an example of this key difference between optimal
paths under edit distance and LCS. In Figure 2 we can see that there is no optimal vertical
(or horizontal) path through the mismatch block. By contrast, there is indeed an optimal
vertical path for the LCS problem as illustrated by Figure 3.

In order to speed up edit distance computation on RLE strings we introduce a new data
structure for input borders and output borders. This will allow us to derive the values of
output borders from their respective input borders in amortised logarithmic time per border,
rather than the previous linear time. The rest of the paper is devoted to this task.

a a a a a a a a a
0 1 2 3 4 5 6 7 8 9

a 1 0 1 2 3 4 5 6 7 8
a 2 1 0 1 2 3 4 5 6 7
a 3 2 1 0 1 2 3 4 5 6
b 4 3 2 1 1 2 3 4 5 6
b 5 4 3 2 2 2 3 4 5 6
b 6 5 4 3 3 3 3 4 5 6
b 7 6 5 4 4 4 4 4 5 6
b 8 7 6 5 5 5 5 5 5 6
b 9 8 7 6 6 6 6 6 6 6
a 10 9 8 7 6 6 6 6 6 6
a 11 10 9 8 7 6 6 6 6 6
a 12 11 10 9 8 7 6 6 6 6

Figure 2 Edit distance with forced turn in
mismatch block.

a a a a a a a a a
0 0 0 0 0 0 0 0 0 0

a 0 1 1 1 1 1 1 1 1 1
a 0 1 2 2 2 2 2 2 2 2
a 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
b 0 1 2 3 3 3 3 3 3 3
a 0 1 2 3 4 4 4 4 4 4
a 0 1 2 3 4 5 5 5 5 5
a 0 1 2 3 4 5 6 6 6 6

Figure 3 LCS with optimal vertical path
through mismatch block.

MFCS 2019

66:6 RLE Edit Distance in Near Optimal Time

3 Efficient Manipulation of Piecewise-Linear Functions

In this section, we describe the data structure we will use to represent input borders and
output borders in the dynamic programming table. We will then show how the operations
from Definition 3 can be implemented efficiently using this data structure.

Recall that a piecewise linear function is a real-valued function F whose domain dom(F)
is a closed interval that can be represented as a union of closed intervals dom(F) =

⋃k
j=1 Ij

such that F restricted to Ij is an affine function (gjx+ hj for some coefficients gj and hj).
The input and output borders as defined in Section 2 are by definition piecewise linear.

In this section, we impose a few further restrictions:
For each integer x ∈ dom(F), the value F (x) is also an integer.
The gradient gj of each F |Ij

is −1, 0, or 1.
The endpoints of dom(F) are integers or half-integers.

The graph of a piecewise linear function F is a simple polygonal curve, and thus it can be
interpreted as a sequence of turning points connected by straight-line segments. Due to
the restrictions imposed on F , each turning point has integer or half-integer coordinates.
We represent such a function F as a sequence of segments stored in an annotated balanced
binary search tree, where each segment explicitly keeps the coordinates of its endpoints.2

We first provide a simple implementation of curves supporting a few basic operations,
and then we gradually augment it to handle more complicated operations. We conclude with
an amortised running time analysis.

3.1 Basic Operations
Our first implementation just stores the corresponding segment for each node v:

(x`, y`): The coordinates of the left endpoint of the segment corresponding to v.
(xr, yr): The coordinates of the right endpoint of the segment corresponding to v.

Nevertheless, we are already able to implement some operations useful in Algorithms 1 and 2.

Create. The create operation produces a function F whose graph consists of just one
segment S with given endpoints (x`, y`) and (xr, yr). This enables us to implement the whole
of line 4 of Algorithm 1 in worst-case constant time.

Join. The join operation takes two functions, FL and FR with domains dom(FL) = [xL, xM]
and dom(FR) = [xM , xR], respectively, and with a common endpoint FL(xM) = FR(xM). It
returns a function F with dom(F) = [xL, xR] such that FL = F |[xL,xM] and FR = F |[xM ,xR].
To implement this operation, we first join the two balanced binary search trees. If the
rightmost segment of FL has the same gradient as the leftmost segment of FR, we also join
these segments. The resulting tree represents F . The worst-case running time is logarithmic.

Split. The split operation takes a function F with dom(F) = [xL, xR] and a value xM ∈
dom(F). It returns two functions FL = F |[xL,xM] and FR = F |[xM ,xR]. To implement it, we
first descend the binary search tree to find a segment S with xM ∈ dom(S). If xM lies in the
interior of dom(S), we split this segment into two. Next, we split the binary search tree to
separate the segments to the left of xM from the segments to the right of xM . The resulting
two trees represent FL and FR, respectively. The worst-case running time is logarithmic.

2 Note that the coordinates of each internal turning point are stored with both incident segments.

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:7

Combine. The combine operation takes two functions F1 and F2 over the same domain
dom(F1) = dom(F2) = [xL, xR] and returns their pointwise minimum: a function F with
dom(F) = [xL, xR] such that F (x) = min(F1(x), F2(x)) for x ∈ dom(F). We assume that
there exists xM ∈ [xL, xR] such that F1(x) > F2(x) if x < xM and F1(x) ≤ F2(x) if x ≥ xM .

If F1(xL) ≤ F2(xL), then xM = xL. Hence, we return F = F1 and discard F2. Similarly,
if F1(xR) > F2(xR), then xM = xR. Hence, we return F = F2 and discard F1.

Otherwise, we are guaranteed that F1(xM) = F2(xM). Our first task is to find xM . For
this, we locate segments S1 of F1 and S2 of F2 such that xM ∈ dom(S1) ∩ dom(S2).

We observe that S1 corresponds to the leftmost node v in the BST of F1 such that
v.yr = F1(v.xr) ≤ F2(v.xr). Hence, we perform a left-to-right in-order traversal of the BST
to find S1. For each visited node v, we evaluate F2(v.xr) by descending the BST of F2 to
find a segment whose domain contains v.xr. Symmetrically, S2 corresponds to the rightmost
node v in the BST of F2 such that F1(v.x`) > F2(v.x`) = v.y`, so we find S2 by performing
a right-to-left in-order traversal of the BST.

Next, we note that (xM , F1(xM)) = (xM , F2(xM)) is the leftmost common point of S1
and S2. Hence, we can now compute xM easily (the restrictions on F1 and F2 guarantee that
it is an integer or a half-integer). Finally, we split both F1 and F2 at xM , discard F1|[xL,xM]
and F2|[xM ,xR], join F2|[xL,xM] with F1|[xM ,xR], and return the resulting function as F .

As far as the running time is concerned, the cost is logarithmic for each discarded segment.
We can now also implement the final combine step that produces our representation of the
output border from the outputs of Algorithms 1 and 2 by finding the minimum at each index.

3.2 Shifts
Next, we extend our data structure to implement the shift operation which moves the whole
function by a given vector. It is useful in Algorithms 1 and 2 for altering S` and Sr.

Formally, given a function F with dom(F) = [xL, xR] and a vector (∆x,∆y), we transform
F into F ′ such that F ′(x) = F (x−∆x) + ∆y for each x ∈ dom(F ′) = [xL + ∆x, xR + ∆x].

This update is performed using a technique known as lazy propagation. We augment each
node v with the following extra field:

(δx, δy): A deferred shift to be propagated within the subtree of v.

This change is then lazily propagated as further operations are executed. Here, we rely on a
key structural property of BST operations:

I Observation 5. The execution of every BST operation can be extended (at the cost of an
extra multiplicative constant in the running time) with a sequence of node activations and
deactivations such that:

a node v is accessed only when it is active and has no active descendant,
when v is active, then all its ancestors are active,
no node is active at the beginning and the end of the execution.

The idea behind lazy propagation is that the deferred updates stored at a node v are
propagated when v is activated. This way, every active node has no delayed updates pending.
Hence, from the perspective of any other operation, the effect is the same as if we have
meticulously modified every node for each update.

The shift propagation is very simple: when a node v receives a request for a shift by
(∆x,∆y), then we just add (∆x,∆y) to the delayed shift (v.δx, v.δy) stored at v. Upon
activation of v, we propagate (v.δx, v.δy) to the children of v, add (v.δx, v.δy) to both (x`, y`)

MFCS 2019

66:8 RLE Edit Distance in Near Optimal Time

and (xr, yr), and reset (v.δx, v.δy) := (0, 0). To implement the shift operation, we just send
a request for a shift by (∆x,∆y) to the root node r.

The worst-case running time of a shift is constant, and the extra cost of propagation does
not increase the asymptotic running time of the remaining operations.

3.3 Gradient Changes
The gradient change operation takes a function F and a coefficient ∆g, and it transforms F
into F ′ such that F ′(x) = F (x) + ∆g · x for each x ∈ dom(F ′) = dom(F). This operation is
needed in both Algorithms 1 and 2 to transform Sr and S`, respectively.

We first note that the constraints imposed on the gradients of functions F and F ′ yield
that ∆g = −1, F is non-decreasing, and F ′ is non-increasing, or ∆g = 1, F is non-increasing,
and F ′ is non-decreasing. However, these limitations only become relevant in Section 3.4.

To implement gradient change, we just add another field to each node v:

δg: A deferred gradient change to be propagated within the subtree of v.

We now have two types of lazily propagated updates: shift and gradient change. These
two operations do not commute, so we need to decide how to interpret the two kinds of
deferred updates stored at a node v. We shall assume that the gradient change by δg is to
be performed before the shift by (δx, δy).

Thus, while shift propagation is implemented as in Section 3.2, adding ∆g to v.δg is
insufficient when a node v receives a request to change gradient by ∆g: we also need to add
∆g · δx to δy. This approach is correct since a shift by (∆x,∆y) followed by a gradient change
by ∆g is equivalent to a gradient change by ∆g followed by a shift by (∆x,∆y + ∆g ·∆x).

Upon activation of v, we first apply the deferred gradient change: we propagate it to the
children of v, increase v.y` by v.δg · v.x` and v.yr by v.δg · v.xr, and reset v.δg = 0. Then, we
handle the deferred shift as in Section 3.2.

Finally, we note that to implement the gradient change operation, we just send a request
for a gradient change by ∆g to the root node r. The worst-case running time is constant.

3.4 Sliding Window Minima
We can finally show how to implement the SWM operation efficiently on our data structure.
This is the most involved of the operations we will need. The SWM operation given a
function F with dom(F) = [xL, xR] and a window width t, returns a function F ′ with
dom(F ′) = [xL, xR + t] such that F ′(x) = min{F (x′) : x′ ∈ [x− t, x] ∩ dom(F)}.

Combinatorial Properties

We begin by observing that the SWM operation is composable.

I Observation 6. Every function F and positive window widths t, t′ satisfy
SWM(SWM(F, t), t′) = SWM(F, t+ t′).

Hence, instead of applying SWM(·, t) for an integer width t, we may equivalently apply
the SWM(·, 1) operation t times. The key property of width 1 is that the changes to the
transformed function are very local. The structure of these modifications can be described
in terms of types of turning points. We classify internal turning points by the gradients
(Increasing, Flat, or Decreasing) of the incident segments; see Table 1, where we also analyse
how a function changes in the vicinity of each turning point subject to SWM(·, 1).

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:9

Table 1 Types of internal turning points and their behaviour subject to the SWM operation.

Type DI Type ID Type IF Type FD Type FI Type DF

A point of type FD or DF remains intact.
A point of type FI or IF is shifted by (1, 0).
A point of type ID is shifted by (0.5,−0.5).
A point of type DI transformed into a point of type DF and a point of type FI, and the
latter is shifted by (1, 0).

Note that the behaviour of DI points is unlike that of other types. However, this
discrepancy disappears if we replace every DI point with two coinciding points of types DF
and FI, respectively, with an artificial length-0 segment in between. Hence, whenever a
new internal turning point is created (which happens only within the join operation), if the
turning point would be of type DI, we pre-emptively replace it by two coinciding points of
type DF and FI, respectively. Note that the resulting length-0 segment never changes its
gradient since gradient change is allowed only on a monotone function. However, when an
incident segment is modified, we may need to remove the length-0 segment. This process
cannot cascade, though, causing another length zero segment to be removed.

Next, we analyse in Table 2 how the SWM(F, 1) operation affects the endpoints of the
graph of F . In most cases, the left endpoint stays intact and the right endpoint is shifted by
(0, 1). The only exceptions are endpoints of type -I and D-, which exhibit similar behaviour
to the internal turning points of type DI. Moreover, this discrepancy also disappears if we
introduce artificial flat segments of length 0. Hence, we replace a point of type -I with two
points of type -F and FI, respectively, and a point of type D- with two points of type DF
and F-, respectively. However, this time the replacement is not pre-emptive: we perform it
as the first step in the implementation of the SWM operation. This is possible because there
are just two endpoints, while the number of internal turning points of type DI could be large.
Our gain, on the other hand, is that we avoid length-0 segments changing their gradients.

With the artificial length-0 segments in place, it is now true that the effect of the SWM
operation on each turning point can be described as a shift depending only on the type of
the point. As a result of these shifts, some segments may disappear as their length reaches 0;
in this case, we say that a segment collapses. Only segments of three kinds may collapse:

a segment between a point of type ID and point of type DF;
a segment between a point of type IF and point of type FD;
a segment between a point of type FI and point of type ID;

Table 2 Types of endpoints and their behaviour subject to the SWM operation.

Type -I Type -F Type -D Type I- Type F- Type D-

MFCS 2019

66:10 RLE Edit Distance in Near Optimal Time

When a segment collapses, it is removed and the two incident turning points are merged.3
Each segment of the three affected kinds has the collapse time, defined as the smallest t for
which SWM(·, t) makes it collapse (assuming no interaction from incident segments) equal
to the Manhattan distance between its endpoints. Note that due to the restrictions on the
piecewise linear functions considered in this section, the collapse time is always an integer.

Implementation

To implement the SWM operation, we augment each node v with the following fields:

type`, typer: The types of the turning points joined by the segment corresponding to v.
δt: The amount of a deferred SWM to be propagated within the subtree of v.
tmin: The minimum collapse time among the segments in the subtree of v.

Note that the type of each internal turning point is stored twice. Hence, whenever a node
type changes, this fact needs to be reflected at both incident segments (and we need to reach
the corresponding nodes by descending the BST; shortcuts would violate Observation 5).

The field v.tmin is of a kind we have not encountered yet: its value depends on the
corresponding values for the children of v and on other fields at v. It is brought up to date
whenever v is deactivated (so that it can be accessed only when v is inactive). We shall
assume that its value already reflects the deferred updates stored at v. The procedure of
recomputing v.tmin is simple: we determine the collapse time of the segment represented by
v (which is infinite or equal to |v.xr − v.x`| + |v.yr − v.y`| depending on the types of the
incident turning points), and take the minimum of this value and u.tmin for every child u of
v. Since v has no deferred changes when it is deactivated, the resulting minimum is v.tmin.

Propagation. The main structural modification to the lazy propagation procedures is that
we maintain an additional invariant that no deferred changes are stored on the leftmost and
on the rightmost path of the BSTs representing every function F . To maintain this invariant,
immediately after lazily updating of the whole F (sending a request to the root node r), we
descend to the leftmost and to the rightmost segment F ; this increases the cost of shift and
gradient change to logarithmic. Note that the split operation must anyway visit the nodes
representing the new boundary segments (to update the types of new endpoints). Moreover,
if a path from the root to a given node v contains no deferred updates, then this is still true
after any rebalancing of the BST (as only active nodes get rotated).

Concerning the lazy SWM propagation, we explicitly forbid requesting for SWM with
window width exceeding r.tmin, because collapsed segments need to be removed before we
proceed further. Also, the window widths (and hence the values δt) are always non-negative.

We have three kinds of deferred updates now: SWM, gradient change, and shift. We fix
the semantics of the fields δt, δg, and (δx, δy) so that an SWM of width δt is performed first,
a gradient change by δg second, and a shift by (δx, δy) last. The requests for a shift and for
a gradient change are still implemented as in Section 3.3; note that these updates do not
affect the collapse times (the three segment kinds with finite collapse times cannot appear
in monotone functions). On the other hand, the request for an SWM with a window width
∆t requires more care. We clearly need to increase δt by ∆t and decrease tmin by the same
amount. The aforementioned steps suffice if δg = 0. Otherwise, we note that the turning

3 Two adjacent segments may collapse simultaneously. In that special case, three subsequent points, of
type FI, ID, and DF, respectively, need to be deleted.

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:11

points in the subtree of v are all of types DF and FD or all of types IF and FI. (Observe that
there are no deferred changes in the proper ancestors of v and that v is not on the leftmost
or rightmost path in this case.) We can easily distinguish the two cases by analysing the
endpoints of the segment corresponding to v. Moreover, the SWM operation is void in the
first of these cases, and in the second one it reduces to a shift by (∆t, 0). Hence, we shall
implement it this way rather than by modifying v.δt.

The propagation itself is relatively easy: upon activation of a node v, we first propagate
the SWM operation to the children of v, update the endpoints of the segment corresponding
to v (according to Tables 1 and 2, with the shift multiplied by δt), and finally reset δt = 0.
Then, we propagate the gradient change and the shift. This is implemented as in Section 3.3
except that the gradient change now affects not only the coordinates but also the types of
the segment’s endpoints.

SWM Procedure. To implement the SWM procedure itself, we first check the endpoint
types and perform appropriate substitutions for endpoints of type -I and D-. Next, we would
like to lazily apply the SWM operation with window width t to the root r. However, this
could result in negative collapse time r.tmin, so instead we perform SWM gradually based
on Observation 6. If r.tmin < t, we make a request for SWM with window width just r.tmin,
leaving the remaining quantity t−r.tmin for later on. This already results in r.tmin = 0, which
indicates that there is a collapsed segment. We descend the tree to find such a collapsed
segment (activating nodes on the way there and deactivating them on the way back), and
take care of this segment appropriately (this may affect neighbouring segments as well). We
repeat the process as long as r.tmin = 0. Once this value is positive again, we are ready to
proceed with further application of SWM.

As far as the running time is concerned, the cost of SWM consists of a logarithmic term
for visiting the endpoints and further logarithmic terms for each collapsed segment.

3.5 Complexity Analysis
We complete this section by showing that the aforementioned operations run in amortised
logarithmic time.

I Lemma 7. A sequence of k operations on piecewise linear functions takes O(k log k) time.

Proof. Our potential is log k multiplied by the total number of turning points in all the stored
functions. First, we observe that this potential grows by O(log k): each operation creates a
constant number of new turning points. In particular, the total number of turning points is
O(k), so manipulating BSTs takes O(log k) time. Next, we note that the worst-case running
time of most operations is O(log k), with extra O(log k) time needed for each discarded or
collapsed segment. However, every such segment decreases the potential by log k. J

4 An O(mn log(mn)) time RLE Edit Distance Algorithm

As in the previous algorithm by Chen and Chao [8], we go through the dynamic programming
table block by block. For every block, we transform the representation of its input border to
the representation of its output border. As mentioned earlier, borders are piecewise linear
with gradient ±1 or 0 so they can be maintained in the structure described in Section 3. We
will assume that the left and the top part of the input border of every block are stored in
separate structures. We start by generating the structures corresponding to the left and the
top border of the whole dynamic programming table. These left and top borders are each a

MFCS 2019

66:12 RLE Edit Distance in Near Optimal Time

single decreasing and increasing sequence, respectively. As a result, we can generate the data
structure for the parts corresponding to all blocks trivially in O(m+ n) time using m+ n

create operations. Now, we have to describe how to obtain the structure corresponding to
the right and the bottom part of the output border of the current block given the structures
corresponding to the left and the top part of its input border. We stress that any structure
will be created and then used once as an input to a further operation, which is crucial for
the amortisation argument within Lemma 7.

Recall that the semantics of split and join operating on arrays in Section 2 and of split and
join operating on piecewise linear functions in Section 3 is slightly different: split now creates
two functions that both contain the value of the original function at xM ; symmetrically, join
takes two functions defined on [xL, xM] and [xM , xR] that share the same value at xM . This
is, however, not an issue because the cases in both (1) and (2) overlap at the boundaries.

For a match block, the value stored in an element (i, j) of the output border is a copy
of the value stored in the corresponding element (id, jd) of the input border. Recalling
that (id, jd) is the intersection of the input border with diagonal j − i, this can be readily
implemented with a constant number of split and join operations.

For a mismatch block, we need to apply Algorithms 1 and 2, merge the returned solutions
by taking the minimum at every position, and finally create separate structures corresponding
to the right and the bottom part of the output border with a single split operation. Note
that while we have already observed that both input border and output border are piecewise
linear with gradient ±1 or 0, we need to make sure that the same is true for every function
obtained inside Algorithms 1 and 2, and for OUTTOP and OUTLEFT in particular.

I Lemma 8. Every function obtained in Algorithms 1 and 2 is piecewise linear with gradient
±1 or 0.

Proof. Consider Algorithm 1. It is easy to verify that S and hence also S` and Sr are
indeed piecewise linear with gradient ±1 or 0. Additionally, S`[i] is equal to the minimum in
LEFT[1, i] and so S` is non-increasing. Consequently, S1, S2, and S3 are all piecewise linear
with gradient ±1 or 0. We only need to verify that the same holds for their concatenation.
This is true because each of these three parts corresponds to a case considered in (1), and
these cases overlap at the boundaries.

Next, consider Algorithm 2. Similarly as above, it is easy to verify that S and so also
S` and Sr are piecewise linear with gradient ±1 or 0. Furthermore, Sr[i] is equal to the
minimum in TOP[w−h+ i+1, w] and so Sr is non-decreasing. Thus, S1 and S2 are piecewise
linear with gradient ±1 or 0 and the same holds for their concatenation because the cases in
(2) overlap at the boundaries. J

We now explain in detail how to implement Algorithm 1. We start with computing S`
and Sr by first calling SWM(LEFT, h − 1) and then using split. Next, S1 is obtained by
applying gradient change and shift to S`, S2 is obtained by calling create, and S3 is obtained
by applying shift to Sr. Finally, OUTLEFT is created with two calls to join.

Algorithm 2 is implemented by calling SWM(TOP, w − 1) and then using split. Next, S1
is obtained by applying shift to S`, while S2 is obtained by applying gradient change and
shift to Sr. Finally, OUTTOP is created by a single call to join.

Having obtained a representation of OUTLEFT and OUTTOP, we call combine to obtain a
representation of the output border. Such a call is valid due to Lemma 4. The overall number
of operations on structures is O(mn), making the final time complexity O(mn log(mn)) by
Lemma 7.

R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznański 66:13

References
1 Hsing-Yen Ann, Chang-Biau Yang, Chiou-Ting Tseng, and Chiou-Yi Hor. A fast and simple

algorithm for computing the longest common subsequence of run-length encoded strings.
Information Processing Letters, 108(6):360–364, 2008. doi:10.1016/j.ipl.2008.07.005.

2 Alberto Apostolico, Gad M. Landau, and Steven Skiena. Matching for Run-Length Encoded
Strings. Journal of Complexity, 15(1):4–16, 1999. doi:10.1006/jcom.1998.0493.

3 Ora Arbell, Gad M. Landau, and Joseph S. B. Mitchell. Edit distance of run-length encoded
strings. Information Processing Letters, 83(6):307–314, 2002. doi:10.1016/S0020-0190(02)
00215-6.

4 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic
Time (Unless SETH is False). SIAM Journal on Computing, 47(3):1087–1097, 2018. doi:
10.1137/15M1053128.

5 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string prob-
lems and dynamic time warping. In Venkatesan Guruswami, editor, 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, pages 79–97. IEEE Computer Society, 2015.
doi:10.1109/FOCS.2015.15.

6 Horst Bunke and János Csirik. An algorithm for matching run-length coded strings. Computing,
50(4):297–314, 1993. doi:10.1007/BF02243873.

7 Horst Bunke and János Csirik. An improved algorithm for computing the edit distance of
run-length coded strings. Information Processing Letters, 54(2):93–96, 1995. doi:10.1016/
0020-0190(95)00005-W.

8 Kuan-Yu Chen and Kun-Mao Chao. A fully compressed algorithm for computing the edit
distance of run-length encoded strings. Algorithmica, 65(2):354–370, 2013. doi:10.1007/
s00453-011-9592-4.

9 Stuart C. Hinds, James L. Fisher, and Donald P. D’Amato. A document skew detection
method using run-length encoding and the Hough transform. In 10th International Conference
on Pattern Recognition, ICDR 1990, volume 1, pages 464–468. IEEE Computer Society, 1990.
doi:10.1109/ICPR.1990.118147.

10 Jia Jie Liu, Guan-Shieng Huang, Yue-Li Wang, and Richard C. T. Lee. Edit distance for
a run-length-encoded string and an uncompressed string. Information Processing Letters,
105(1):12–16, 2007. doi:10.1016/j.ipl.2007.07.006.

11 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. Nordic
Journal of Computing, 12(1):40–66, 2005. URL: https://users.dcc.uchile.cl/~gnavarro/
ps/njc05.pdf.

12 William J. Masek and Mike Paterson. A faster algorithm for computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)
90002-1.

13 Yoshifumi Sakai. Computing the longest common subsequence of two run-length encoded
strings. In Kun-Mao Chao, Tsan-sheng Hsu, and Der-Tsai Lee, editors, 23rd International
Symposium on Algorithms and Computation, ISAAC 2012, volume 7676 of LNCS, pages
197–206. Springer, 2012. doi:10.1007/978-3-642-35261-4_23.

14 Taras K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,
1968. doi:10.1007/bf01074755.

15 Dong-Hui Xu, Arati S. Kurani, Jacob D. Furst, and Daniela S. Raicu. Run-length encoding for
volumetric texture. In Juan J. Villanieva, editor, 4th IASTED International Conference on Visu-
alization, Imaging, and Image Processing, VIIP 2004. Acta Press, 2004. URL: http://facweb.
cs.depaul.edu/research/vc/Publications/final_submission_paper_452_131_last.pdf.

MFCS 2019

https://doi.org/10.1016/j.ipl.2008.07.005
https://doi.org/10.1006/jcom.1998.0493
https://doi.org/10.1016/S0020-0190(02)00215-6
https://doi.org/10.1016/S0020-0190(02)00215-6
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1007/BF02243873
https://doi.org/10.1016/0020-0190(95)00005-W
https://doi.org/10.1016/0020-0190(95)00005-W
https://doi.org/10.1007/s00453-011-9592-4
https://doi.org/10.1007/s00453-011-9592-4
https://doi.org/10.1109/ICPR.1990.118147
https://doi.org/10.1016/j.ipl.2007.07.006
https://users.dcc.uchile.cl/~gnavarro/ps/njc05.pdf
https://users.dcc.uchile.cl/~gnavarro/ps/njc05.pdf
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1007/978-3-642-35261-4_23
https://doi.org/10.1007/bf01074755
http://facweb.cs.depaul.edu/research/vc/Publications/final_submission_paper_452_131_last.pdf
http://facweb.cs.depaul.edu/research/vc/Publications/final_submission_paper_452_131_last.pdf

	Introduction
	Previous Work and Preliminaries
	Efficient Manipulation of Piecewise-Linear Functions
	Basic Operations
	Shifts
	Gradient Changes
	Sliding Window Minima
	Complexity Analysis

	An O(mn log(mn)) time RLE Edit Distance Algorithm

