745 research outputs found

    Percolation of randomly distributed growing clusters

    Full text link
    We investigate the problem of growing clusters, which is modeled by two dimensional disks and three dimensional droplets. In this model we place a number of seeds on random locations on a lattice with an initial occupation probability, pp. The seeds simultaneously grow with a constant velocity to form clusters. When two or more clusters eventually touch each other they immediately stop their growth. The probability that such a system will result in a percolating cluster depends on the density of the initially distributed seeds and the dimensionality of the system. For very low initial values of pp we find a power law behavior for several properties that we investigate, namely for the size of the largest and second largest cluster, for the probability for a site to belong to the finally formed spanning cluster, and for the mean radius of the finally formed droplets. We report the values of the corresponding scaling exponents. Finally, we show that for very low initial concentration of seeds the final coverage takes a constant value which depends on the system dimensionality.Comment: 5 pages, 7 figure

    Specificity and coherence of body representations

    Get PDF
    Bodily illusions differently affect body representations underlying perception and action. We investigated whether this task dependence reflects two distinct dimensions of embodiment: the sense of agency and the sense of the body as a coherent whole. In experiment 1 the sense of agency was manipulated by comparing active versus passive movements during the induction phase in a video rubber hand illusion (vRHI) setup. After induction, proprioceptive biases were measured both by perceptual judgments of hand position, as well as by measuring end-point accuracy of subjects' active pointing movements to an external object with the affected hand. The results showed, first, that the vRHI is largely perceptual: passive perceptual localisation judgments were altered, but end-point accuracy of active pointing responses with the affected hand to an external object was unaffected. Second, within the perceptual judgments, there was a novel congruence effect, such that perceptual biases were larger following passive induction of vRHI than following active induction. There was a trend for the converse effect for pointing responses, with larger pointing bias following active induction. In experiment 2, we used the traditional RHI to investigate the coherence of body representation by synchronous stimulation of either matching or mismatching fingers on the rubber hand and the participant's own hand. Stimulation of matching fingers induced a local proprioceptive bias for only the stimulated finger, but did not affect the perceived shape of the hand as a whole. In contrast, stimulation of spatially mismatching fingers eliminated the RHI entirely. The present results show that (i) the sense of agency during illusion induction has specific effects, depending on whether we represent our body for perception or to guide action, and (ii) representations of specific body parts can be altered without affecting perception of the spatial configuration of the body as a whole

    Percolation of randomly distributed growing clusters: Finite Size Scaling and Critical Exponents

    Full text link
    We study the percolation properties of the growing clusters model. In this model, a number of seeds placed on random locations on a lattice are allowed to grow with a constant velocity to form clusters. When two or more clusters eventually touch each other they immediately stop their growth. The model exhibits a discontinuous transition for very low values of the seed concentration pp and a second, non-trivial continuous phase transition for intermediate pp values. Here we study in detail this continuous transition that separates a phase of finite clusters from a phase characterized by the presence of a giant component. Using finite size scaling and large scale Monte Carlo simulations we determine the value of the percolation threshold where the giant component first appears, and the critical exponents that characterize the transition. We find that the transition belongs to a different universality class from the standard percolation transition.Comment: 5 two-column pages, 6 figure

    Octopus-inspired multi-arm robotic swimming

    Get PDF
    The outstanding locomotor and manipulation characteristics of the octopus have recently inspired the development, by our group, of multi-functional robotic swimmers, featuring both manipulation and locomotion capabilities, which could be of significant engineering interest in underwater applications. During its little-studied arm-swimming behavior, as opposed to the better known jetting via the siphon, the animal appears to generate considerable propulsive thrust and rapid acceleration, predominantly employing movements of its arms. In this work, we capture the fundamental characteristics of the corresponding complex pattern of arm motion by a sculling profile, involving a fast power stroke and a slow recovery stroke. We investigate the propulsive capabilities of a multi-arm robotic system under various swimming gaits, namely patterns of arm coordination, which achieve the generation of forward, as well as backward, propulsion and turning. A lumped-element model of the robotic swimmer, which considers arm compliance and the interaction with the aquatic environment, was used to study the characteristics of these gaits, the effect of various kinematic parameters on propulsion, and the generation of complex trajectories. This investigation focuses on relatively high-stiffness arms. Experiments employing a compliant-body robotic prototype swimmer with eight compliant arms, all made of polyurethane, inside a water tank, successfully demonstrated this novel mode of underwater propulsion. Speeds of up to 0.26 body lengths per second (approximately 100 mm s(-1)), and propulsive forces of up to 3.5 N were achieved, with a non-dimensional cost of transport of 1.42 with all eight arms and of 0.9 with only two active arms. The experiments confirmed the computational results and verified the multi-arm maneuverability and simultaneous object grasping capability of such systems

    Increased plasticity of the bodily self in eating disorders

    Get PDF
    Background: The rubber hand illusion (RHI) has been widely used to investigate the bodily self in healthy individuals. The aim of the present study was to extend the use of the RHI to examine the bodily self in eating disorders. Methods: The RHI and self-report measures of eating disorder psychopathology (EDI-3 subscales of Drive for Thinness, Bulimia, Body Dissatisfaction, Interoceptive Deficits, and Emotional Dysregulation; DASS-21; and the Self-Objectification Questionnaire) were administered to 78 individuals with an eating disorder and 61 healthy controls. Results: Individuals with an eating disorder experienced the RHI significantly more strongly than healthy controls on both perceptual (i.e., proprioceptive drift) and subjective (self-report questionnaire) measures. Furthermore, both the subjective experience of the RHI and associated proprioceptive biases were correlated with eating disorder psychopathology. Approximately 20% of the variance for embodiment of the fake hand was accounted for by eating disorder psychopathology, with interoceptive deficits and self-objectification significant predictors of embodiment. Conclusions: These results indicate that the bodily self is more plastic in people with an eating disorder. These findings may shed light on both aetiological and maintenance factors involved in eating disorders, particularly visual processing of the body, interoceptive deficits, and self-objectification

    Airway status in civilian maxillofacial gunshot Injuries in Johannesburg, South Africa

    Get PDF
    Background. Airway management of the maxillofacial gunshot injury constitutes a critical decision and an area that requires review in the context of civilian injuries. Most of our knowledge is extrapolated from military experience, which constitutes a different trauma patient group. This paper reports a retrospective survey of airway status in relation to maxillofacial gunshot injuries. The objective is to correlate clinical findings with treatment decisions. Methods. A survey was done of 11 622 archived maxillofacial surgery records (1987- 1992) in the three academic hospitals in Johannesburg. Results. There were 211 maxillofacial gunshot injuries, for which 92 patient records had sufficient detail for inclusion in the analysis. The typical patient was a black male aged 20 – 29 years, shot with a low-velocity bullet of 0.38 calibre, admitted to hospital the day of the injury, operated on within 4 days, and discharged 4 days later. The airway was threatened in 20/92 cases at admission; 12/20 cases were treated with oro-or nasotracheal intubation, and 9/12 later had elective tracheostomies; 8/20 needed immediate surgical airways, 5 tracheostomies and 3 cricothyroidotomies (all later converted to tracheostomies). Three of thirty-seven patients with normal airways on admission later required emergency tracheostomy.Conclusions. An abnormal airway was significantly more likely after a high-velocity injury, and when the tongue, floor of mouth, midline or bilateral facial skeletal bones were involved

    A finite element method for non-linear hyperelasticity applied for the simulation of octopus ARM motions

    Get PDF
    An implicit non-linear finite element (FE) numerical procedure for the simulation of biological muscular tissues is presented. The method has been developed for studying the motion of muscular hydrostats, such as squid and octopus arms and its general framework is applicable to other muscular tissues. The FE framework considered is suitable for the dynamic numerical simulations of three-dimensional non-linear nearly incompressible hyperelastic materials that undergo large displacements and deformations. Human and animal muscles, consisting of fibers and connective tissues, belong to this class of materials. The stress distribution inside the muscular FE model is considered as the superposition of stresses along the muscular fibers and the connective tissues. The stresses along the fibers are modeled as the sum of active and passive stresses, according to the muscular model of Van Leeuwen and Kier (1997) Philos. Trans. R. Soc. London, 352: 551-571. Passive stress distribution is an experimentally-defined function of fibers’ deformation; while active stress distribution is the product of an activation level time function, a force-stretch function and a force-stretch ratio function. The mechanical behavior of the surrounding tissues is determined adopting a Mooney-Rivlin constitutive model. The incompressibility criterion is met by enforcing large bulk modulus and by introducing modified deformation measures. Due to the non-linear nature of the problem, approximate determination of the Jacobian matrix is performed, in order to utilize the full Newton-Raphson iterative procedure within each time-step. In addition, time discretization is performed via the implicit Newmark method. We developed an open-source finite element code that is capable of simulating large deflection maneuvers of muscular hydrostats. The proposed methodology is validated by comparing the numerical results with existing measurements for the squid arm extension. The efficiency and robustness of the proposed numerical method is demonstrated through a series of octopus arm maneuvers, such as extension, compression and bending

    Can gaze-contingent mirror-feedback from unfamiliar faces alter self-recognition?

    Get PDF
    This study focuses on learning of the self, by examining how human observers update internal representations of their own face. For this purpose, we present a novel gaze-contingent paradigm, in which an onscreen face either mimics observers’ own eye-gaze behaviour (in the congruent condition), moves its eyes in different directions to that of the observers (incongruent condition), or remains static and unresponsive (neutral condition). Across three experiments, the mimicry of the onscreen face did not affect observers’ perceptual self-representations. However, this paradigm influenced observers’ reports of their own face. This effect was such that observers felt the onscreen face to be their own and that, if the onscreen gaze had moved on its own accord, observers expected their own eyes to move too. The theoretical implications of these findings are discussed
    • …
    corecore