We study the percolation properties of the growing clusters model. In this
model, a number of seeds placed on random locations on a lattice are allowed to
grow with a constant velocity to form clusters. When two or more clusters
eventually touch each other they immediately stop their growth. The model
exhibits a discontinuous transition for very low values of the seed
concentration p and a second, non-trivial continuous phase transition for
intermediate p values. Here we study in detail this continuous transition
that separates a phase of finite clusters from a phase characterized by the
presence of a giant component. Using finite size scaling and large scale Monte
Carlo simulations we determine the value of the percolation threshold where the
giant component first appears, and the critical exponents that characterize the
transition. We find that the transition belongs to a different universality
class from the standard percolation transition.Comment: 5 two-column pages, 6 figure