304 research outputs found

    Application of Finite Strain Landau Theory To High Pressure Phase Transitions

    Full text link
    In this paper we explain how to set up what is in fact the only possible consistent construction scheme for a Landau theory of high pressure phase transitions that systematically allows to take into account elastic nonlinearities. We also show how to incorporate available information on the pressure dependence of elastic constants taken from experiment or simulation. We apply our new theory to the example of the high pressure cubic-tetragonal phase transition in Strontium Titanate, a model perovskite that has played a central role in the development of the theory of structural phase transitions. Armed with pressure dependent elastic constants calculated by density functional theory, we give a both qualitatively as well as quantitatively satisfying description of recent high precision experimental data. Our nonlinear theory also allows to predict a number of additional elastic transition anomalies that are accessible to experiment.Comment: submitted to Phys. Rev. Let

    Finite strain Landau theory of high pressure phase transformations

    Full text link
    The properties of materials near structural phase transitions are often successfully described in the framework of Landau theory. While the focus is usually on phase transitions, which are induced by temperature changes approaching a critical temperature T-c, here we will discuss structural phase transformations driven by high hydrostatic pressure, as they are of major importance for understanding processes in the interior of the earth. Since at very high pressures the deformations of a material are generally very large, one needs to apply a fully nonlinear description taking physical as well as geometrical nonlinearities (finite strains) into account. In particular it is necessary to retune conventional Landau theory to describe such phase transitions. In Troster et al (2002 Phys. Rev. Lett. 88 55503) we constructed a Landau-type free energy based on an order parameter part, an order parameter-(finite) strain coupling and a nonlinear elastic term. This model provides an excellent and efficient framework for the systematic study of phase transformations for a wide range of materials up to ultrahigh pressures

    The noise of many needles: Jerky domain wall propagation in PbZrO3 and LaAlO3

    Get PDF
    Measurements of the sample length of PbZrO3 and LaAlO3 under slowly increasing force (3-30 mN/min) yield a superposition of a continuous decrease interrupted by discontinuous drops. This strain intermittency is induced by the jerky movement of ferroelastic domain walls through avalanches near the depinning threshold. At temperatures close to the domain freezing regime, the distributions of the calculated squared drop velocity maxima N(υm2) follow a power law behaviour with exponents ε=1.6±0.2. This is in good agreement with the energy exponent ε=1.8±0.2 recently found for the movement of a single needle tip in LaAlO3 [R. J. Harrison and E. K. H. Salje, Appl. Phys. Lett. 97, 021907 (2010)]. With increasing temperature, N(υm2) changes from a power law at low temperatures to an exponential law at elevated temperatures, indicating that thermal fluctuations increasingly enable domain wall segments to unpin even when the driving force is smaller than the corresponding barrier

    Criteria for the diagnosis of corticobasal degeneration

    Get PDF
    Current criteria for the clinical diagnosis of pathologically confirmed corticobasal degeneration (CBD) no longer reflect the expanding understanding of this disease and its clinicopathologic correlations. An international consortium of behavioral neurology, neuropsychology, and movement disorders specialists developed new criteria based on consensus and a systematic literature review. Clinical diagnoses (early or late) were identified for 267 nonoverlapping pathologically confirmed CBD cases from published reports and brain banks. Combined with consensus, 4 CBD phenotypes emerged: corticobasal syndrome (CBS), frontal behavioral-spatial syndrome (FBS), nonfluent/agrammatic variant of primary progressive aphasia (naPPA), and progressive supranuclear palsy syndrome (PSPS). Clinical features of CBD cases were extracted from descriptions of 209 brain bank and published patients, providing a comprehensive description of CBD and correcting common misconceptions. Clinical CBD phenotypes and features were combined to create 2 sets of criteria: more specific clinical research criteria for probable CBD and broader criteria for possible CBD that are more inclusive but have a higher chance to detect other tau-based pathologies. Probable CBD criteria require insidious onset and gradual progression for at least 1 year, age at onset ≥50 years, no similar family history or known tau mutations, and a clinical phenotype of probable CBS or either FBS or naPPA with at least 1 CBS feature. The possible CBD category uses similar criteria but has no restrictions on age or family history, allows tau mutations, permits less rigorous phenotype fulfillment, and includes a PSPS phenotype. Future validation and refinement of the proposed criteria are needed

    Modeling of a single-disc dry clutch using the C&C2^{2} approach to identify critical shape-function relationships related to the vibration phenomenon of forced clutch judder [Modellierung einer Einscheibentrockenkupplung mithilfe des C&C2^{2}-Ansatzes zur Identifikation von kritischen Gestalt-Funktion-Zusammenhängen bezüglich des Schwingungsphänomens zwangserregtes Kupplungsrupfen]

    Get PDF
    In diesem Beitrag wird ein systematisches Vorgehen zur Identifikation von kritischen Gestalt-Funktion-Zusammenhängen mit Einfluss auf zwangserregtes Kupplungsrupfen entwickelt. Dazu wird am Beispiel einer Einscheibentrockenkupplung ein Modell mit dem C&C2^{2}-Ansatz erstellt und analysiert. Dadurch werden Entwickler bei der Auswahl kritischer Einflussfaktoren für das zwangserregte Kupplungsrupfen unterstützt. Zudem werden bisher vorhandene Lücken bei der Erklärung der Wirkzusammenhänge zwischen den Einflussfaktoren und zwangserregtem Kupplungsrupfen geschlossen. Hierzu werden C&C2^{2}-Modelle zur Erklärung dieser Wirkzusammenhänge über verschiedene Systemebenen hinweg gebildet und die Kritikalität von Modellelementen bezüglich Kupplungsrupfen eingeschätzt. Einflussfaktoren aus der Systemumgebung werden konsistent in die erstellten Modelle integriert, um die Wirkzusammenhänge systemebenenübergreifend darzustellen. Auf Basis der Modelle werden Hypothesen zu den Wirkzusammenhängen der Einflussfaktoren gebildet. Die Hypothesen legen die Grundlage für die Konzipierung eines Prüfaufbaus, mit dessen Hilfe die qualitativen Modelle validiert und im weiteren Verlauf des Forschungsvorhabens quantifiziert werden. Auf Basis der Modelle werden zukünftig systematisch Ideen zur Reduzierung von Kupplungsrupfen mit Elementen aus dem Modell der PGE abgeleitet und bezüglich ihres Potenzials bewertet

    KiDS-1000: Cross-correlation with Planck cosmic microwave background lensing and intrinsic alignment removal with self-calibration

    Get PDF
    CONTEXT: Galaxy shear and cosmic microwave background (CMB) lensing convergence cross-correlations contain additional information on cosmology with respect to auto-correlations. While remaining immune to certain systemic effects, these cross-correlations are nonetheless affected by the galaxy's intrinsic alignments (IA). These effects may, in fact, be responsible for the reported low lensing amplitude of the galaxy shear × CMB convergence cross-correlations, compared to the standard Planck ACDM (cosmological constant and cold dark matter) cosmology predictions. AIMS: In this work, we investigate how IA affects the Kilo-Degree Survey (KiDS) galaxy lensing shear and Planck CMB lensing convergence cross-correlation and we compare it to previous treatments, both with and without IA taken into consideration. METHODS: We compared the marginalization over IA parameters and the IA self-calibration (SC) method (with additional observables defined only from the source galaxies) to demonstrate that SC can efficiently break the degeneracy between the CMB lensing amplitude, Alens, and the IA amplitude, AIA. We further investigated how different systematics affect the resulting AIA and Alens and we validated our results with the MICE2 simulation. RESULTS: We find that by including the SC method to constrain IA, the information loss due to the degeneracy between CMB lensing and IA is strongly reduced. The best-fit values are Alens = 0.84-0.22+0.22 and AIA = 0.60-1.03+1.03, while different angular scale cuts can affect Alens by ~10%. We show that an appropriate treatment of the boost factor, cosmic magnification, and photometric redshift modeling is important for obtaining the correct IA and cosmological results

    Exact exchange-correlation potential of a ionic Hubbard model with a free surface

    Full text link
    We use Lanczos exact diagonalization to compute the exact exchange-correlation (xc) potential of a Hubbard chain with large binding energy ("the bulk") followed by a chain with zero binding energy ("the vacuum"). Several results of density functional theory in the continuum (sometimes controversial) are verified in the lattice. In particular we show explicitly that the fundamental gap is given by the gap in the Kohn-Sham spectrum plus a contribution due to the jump of the xc-potential when a particle is added. The presence of a staggered potential and a nearest-neighbor interaction V allows to simulate a ionic solid. We show that in the ionic regime in the small hopping amplitude limit the xc-contribution to the gap equals V, while in the Mott regime it is determined by the Hubbard U interaction. In addition we show that correlations generates a new potential barrier at the surface

    A gravitational lensing detection of filamentary structures connecting luminous red galaxies

    Get PDF
    We present a weak lensing detection of filamentary structures in the cosmic web, combining data from the Kilo-Degree Survey, the Red Cluster Sequence Lensing Survey, and the Canada-France-Hawaii Telescope Lensing Survey. The line connecting luminous red galaxies with a separation of 3 − 5 h−1 Mpc was chosen as a proxy for the location of filaments. We measured the average weak lensing shear around ∼11 000 candidate filaments selected in this way from the Sloan Digital Sky Survey. After nulling the shear induced by the dark matter haloes around each galaxy, we reported a 3.4σ detection of an anisotropic shear signal from the matter that connects them. Adopting a filament density profile, motivated from N-body simulations, the average density at the centre of these filamentary structures was found to be 15 ± 4 times the critical density

    KiDS-450: enhancing cosmic shear with clipping transformations

    Get PDF
    We present the first ‘clipped’ cosmic shear measurement using data from the Kilo-Degree Survey (KiDS-450). ‘Clipping’ transformations suppress the signal from the highest density, non-linear regions of cosmological fields. We demonstrate that these transformations improve constraints on S8 = σ8(Ωm/0.3)0.5 when used in combination with conventional two-point statistics. For the KiDS-450 data, we find that the combined measurements improve the constraints on S8 by 17 per cent, compared to shear correlation functions alone. We determine the expectation value of the clipped shear correlation function using a suite of numerical simulations, and develop methodology to mitigate the impact of masking and shot noise. Future improvements in numerical simulations and mass reconstruction methodology will permit the precise calibration of clipped cosmic shear statistics such that clipping can become a standard tool in weak-lensing analyses
    • …
    corecore