14 research outputs found

    Effects of endothelin-1 on calcium and potassium currents in undiseased human ventricular myocytes

    No full text
    Endothelins have been reported to exert a wide range of electrophysiological effects in mammalian cardiac cells. These results are controversial and human data are not available. Our aim was to study the effects of endothelin-l (ET-1, 8 nmol/l) on the L-type calcium current (ICa-L) and various potassium currents (rapid component of the delayed rectifier, I-Kr; transient outward current, I-to; and the inward rectifier K current, I-K1) in isolated human ventricular cardiomyocytes. Cells were obtained from undiseased donor hearts using collagenase digestion via the segment perfusion technique. The whole-cell configuration of the patch-clamp technique was applied to measure ionic currents at 37 degreesC. ET-1 significantly decreased peak I-Ca,I-L from 10.2+/-0.6 to 6.8+/-0.8 pA/pF at +5 mV (66.7% of control, P <0.05, n=5). This reduction of peak current was accompanied by a lengthening of inactivation. The voltage dependence of steady-state activation and inactivation was not altered by ET-1. I-Kr, measured as tail current amplitudes at -40 mV, decreased from 0.31+/-0.02 to 0.06+/-0.02 pA/pF (20.3% of control, P <0.05, n=4) after exposure to ET-1. ET-I failed to change the peak amplitude of I-to, measured at +50 mV (9.3+/-4.6 and 9.0+/-4.4 pA/pF before and after ET-1, respectively), or steady-state I-K1 amplitude, measured at the end of a 400-ms hyperpolarization to -100 mV (3.6+/-1.4 and 3.7+/-1.4 pA/pF, n=4). The present results indicate that in undiseased human ventricular myocytes ET-1 inhibits both ICa-L and I-Kr; however, the degree of suppression of the two currents is different

    Biphasic effect of bimoclomol on calcium handling in mammalian ventricular myocardium

    No full text
    1. Concentration-dependent effects of bimoclomol, the novel heat shock protein coinducer, on intracellular calcium transients and contractility were studied in Langendorff-perfused guinea-pig hearts loaded with the fluorescent calcium indicator dye Fura-2. Bimoclomol had a biphasic effect on contractility: both peak left ventricular pressure and the rate of force development significantly increased at a concentration of 10 nM or higher. The maximal effect was observed between 0.1 and 1 μM, and the positive inotropic action disappeared by further increasing the concentration of bimoclomol. The drug increased systolic calcium concentration with a similar concentration-dependence. In contrast, diastolic calcium concentration increased monotonically in the presence of bimoclomol. Thus low concentrations of the drug (10–100 nM) increased, whereas high concentrations (10 μM) decreased the amplitude of intracellular calcium transients. 2. Effects of bimoclomol on action potential configuration was studied in isolated canine ventricular myocytes. Action potential duration was increased at low (10 nM), unaffected at intermediate (0.1–1 μM) and decreased at high (10–100 μM) concentrations of the drug. 3. In single canine sarcoplasmic calcium release channels (ryanodine receptor), incorporated into artificial lipid bilayer, bimoclomol significantly increased the open probability of the channel in the concentration range of 1–10 μM. The increased open probability was associated with increased mean open time. The effect of bimoclomol was again biphasic: the open probability decreased below the control level in the presence of 1 mM bimoclomol. 4. Bimoclomol (10 μM–1 mM) had no significant effect on the rate of calcium uptake into sarcoplasmic reticulum vesicles of the dog, indicating that in vivo calcium reuptake might not substantially be affected by the drug. 5. In conclusion, the positive inotropic action of bimoclomol is likely due to the activation of the sarcoplasmic reticulum calcium release channel in mammalian ventricular myocardium

    Na+/Ca2+ exchanger inhibition exerts a positive inotropic effect in the rat heart, but fails to influence the contractility of the rabbit heart

    Get PDF
    Background and purpose: The Na+/Ca2+ exchanger (NCX) may play a key role in myocardial contractility. The operation of the NCX is affected by the action potential (AP) configuration and the intracellular Na+ concentration. This study examined the effect of selective NCX inhibition by 0.1, 0.3 and 1.0 μM SEA0400 on the myocardial contractility in the setting of different AP configurations and different intracellular Na+ concentrations in rabbit and rat hearts
    corecore