3,815 research outputs found

    The Spontaneous Emergence of Social Influence in Online Systems

    Full text link
    Social influence drives both offline and online human behaviour. It pervades cultural markets, and manifests itself in the adoption of scientific and technical innovations as well as the spread of social practices. Prior empirical work on the diffusion of innovations in spatial regions or social networks has largely focused on the spread of one particular technology among a subset of all potential adopters. It has also been difficult to determine whether the observed collective behaviour is driven by natural influence processes, or whether it follows external signals such as media or marketing campaigns. Here, we choose an online context that allows us to study social influence processes by tracking the popularity of a complete set of applications installed by the user population of a social networking site, thus capturing the behaviour of all individuals who can influence each other in this context. By extending standard fluctuation scaling methods, we analyse the collective behaviour induced by 100 million application installations, and show that two distinct regimes of behaviour emerge in the system. Once applications cross a particular threshold of popularity, social influence processes induce highly correlated adoption behaviour among the users, which propels some of the applications to extraordinary levels of popularity. Below this threshold, the collective effect of social influence appears to vanish almost entirely in a manner that has not been observed in the offline world. Our results demonstrate that even when external signals are absent, social influence can spontaneously assume an on-off nature in a digital environment. It remains to be seen whether a similar outcome could be observed in the offline world if equivalent experimental conditions could be replicated

    Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values

    Get PDF
    The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data

    Large-wavelength instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers

    Full text link
    We study the linear stability of the flow of a viscous electrically conducting capillary fluid on a planar fixed plate in the presence of gravity and a uniform magnetic field. We first confirm that the Squire transformation for MHD is compatible with the stress and insulating boundary conditions at the free surface, but argue that unless the flow is driven at fixed Galilei and capillary numbers, the critical mode is not necessarily two-dimensional. We then investigate numerically how a flow-normal magnetic field, and the associated Hartmann steady state, affect the soft and hard instability modes of free surface flow, working in the low magnetic Prandtl number regime of laboratory fluids. Because it is a critical layer instability, the hard mode is found to exhibit similar behaviour to the even unstable mode in channel Hartmann flow, in terms of both the weak influence of Pm on its neutral stability curve, and the dependence of its critical Reynolds number Re_c on the Hartmann number Ha. In contrast, the structure of the soft mode's growth rate contours in the (Re, alpha) plane, where alpha is the wavenumber, differs markedly between problems with small, but nonzero, Pm, and their counterparts in the inductionless limit. As derived from large wavelength approximations, and confirmed numerically, the soft mode's critical Reynolds number grows exponentially with Ha in inductionless problems. However, when Pm is nonzero the Lorentz force originating from the steady state current leads to a modification of Re_c(Ha) to either a sublinearly increasing, or decreasing function of Ha, respectively for problems with insulating and conducting walls. In the former, we also observe pairs of Alfven waves, the upstream propagating wave undergoing an instability at large Alfven numbers.Comment: 58 pages, 16 figure

    Water Demand Management in England and Wales: constructions of the domestic water-user

    Get PDF
    YesMeasures to manage demand include implicit and explicit messages about domestic water-users which have important potential impacts on their perceptions and practices. Drawing on recent literature, this paper identifies three different ¿dimensions¿ along which demand management measures¿ constructions of the water-user may vary: these relate to whether the water user is passive or active, whether they are motivated by individual or common needs, and whether they perceive water as a right or a commodity. Demand management measures currently used in England and Wales are then discussed and analysed. The paper concludes by highlighting the importance of communications associated with demand management, and in particular, notes the need to consider the cumulative impact of messages and their interactions with people¿s existing understandings

    Eigenvalue and Eigenvector Analysis of Stability for a Line of Traffic

    Get PDF
    Many authors have recognized that traffic under the traditional car-following model (CFM) is subject to flow instabilities. A recent model achieves stability using bilateral control (BCM)—by looking both forward and backward [1]. (Looking back may be difficult or distracting for human drivers, but is not a problem for sensors.) We analyze the underlying systems of differential equations by studying their eigenvalues and eigenvectors under various boundary conditions. Simulations further confirm that bilateral control can avoid instabilities and reduce the chance of collisions

    Thermal fluctuation field for current-induced domain wall motion

    Full text link
    Current-induced domain wall motion in magnetic nanowires is affected by thermal fluctuation. In order to account for this effect, the Landau-Lifshitz-Gilbert equation includes a thermal fluctuation field and literature often utilizes the fluctuation-dissipation theorem to characterize statistical properties of the thermal fluctuation field. However, the theorem is not applicable to the system under finite current since it is not in equilibrium. To examine the effect of finite current on the thermal fluctuation, we adopt the influence functional formalism developed by Feynman and Vernon, which is known to be a useful tool to analyze effects of dissipation and thermal fluctuation. For this purpose, we construct a quantum mechanical effective Hamiltonian describing current-induced domain wall motion by generalizing the Caldeira-Leggett description of quantum dissipation. We find that even for the current-induced domain wall motion, the statistical properties of the thermal noise is still described by the fluctuation-dissipation theorem if the current density is sufficiently lower than the intrinsic critical current density and thus the domain wall tilting angle is sufficiently lower than pi/4. The relation between our result and a recent result, which also addresses the thermal fluctuation, is discussed. We also find interesting physical meanings of the Gilbert damping alpha and the nonadiabaticy parameter beta; while alpha characterizes the coupling strength between the magnetization dynamics (the domain wall motion in this paper) and the thermal reservoir (or environment), beta characterizes the coupling strength between the spin current and the thermal reservoir.Comment: 16 page, no figur

    Any-order propagation of the nonlinear Schroedinger equation

    Full text link
    We derive an exact propagation scheme for nonlinear Schroedinger equations. This scheme is entirely analogous to the propagation of linear Schroedinger equations. We accomplish this by defining a special operator whose algebraic properties ensure the correct propagation. As applications, we provide a simple proof of a recent conjecture regarding higher-order integrators for the Gross-Pitaevskii equation, extend it to multi-component equations, and to a new class of integrators.Comment: 10 pages, no figures, submitted to Phys. Rev.
    corecore