A second-order numerical implementation is given for recently derived
nonlinear wave equations for general relativity. The Gowdy T3 cosmology is
used as a test bed for studying the accuracy and convergence of simulations of
one-dimensional nonlinear waves. The complete freedom in space-time slicing in
the present formulation is exploited to compute in the Gowdy line-element.
Second-order convergence is found by direct comparison of the results with
either analytical solutions for polarized waves, or solutions obtained from
Gowdy's reduced wave equations for the more general unpolarized waves. Some
directions for extensions are discussed.Comment: 19 pages (LaTex), 3 figures (ps