345 research outputs found

    Relativity and Magnetism in Ni-Pd and Ni-Pt Alloys

    Full text link
    We show that the differences in the magnetic properties of Ni-Pd and Ni-Pt alloys arise mainly due to relativity. In particular, we find that the local magnetic moment of Ni increases with the addition of Pd in Ni-Pd while it decreases with the addition of Pt in Ni-Pt, as found experimentally, only if relativity is present. Our analysis is based on the effects of relativity on (i) the spin-polarized densities of states of Ni, (ii) the splitting of majority and minority spin d-band centers of Ni, and (iii) the separation between s-d band centers of Pd and Pt in Ni-Pd and Ni-Pt alloys.Comment: one figure added, a paragraph added in discussio

    A simple formula for the L-gap width of a face-centered-cubic photonic crystal

    Get PDF
    The width L\triangle_L of the first Bragg's scattering peak in the (111) direction of a face-centered-cubic lattice of air spheres can be well approximated by a simple formula which only involves the volume averaged ϵ\epsilon and ϵ2\epsilon^2 over the lattice unit cell, ϵ\epsilon being the (position dependent) dielectric constant of the medium, and the effective dielectric constant ϵeff\epsilon_{eff} in the long-wavelength limit approximated by Maxwell-Garnett's formula. Apparently, our formula describes the asymptotic behaviour of the absolute gap width L\triangle_L for high dielectric contrast δ\delta exactly. The standard deviation σ\sigma steadily decreases well below 1% as δ\delta increases. For example σ<0.1\sigma< 0.1% for the sphere filling fraction f=0.2f=0.2 and δ20\delta\geq 20. On the interval δ(1,100)\delta\in(1,100), our formula still approximates the absolute gap width L\triangle_L (the relative gap width Lr\triangle_L^r) with a reasonable precision, namely with a standard deviation 3% (4.2%) for low filling fractions up to 6.5% (8%) for the close-packed case. Differences between the case of air spheres in a dielectric and dielectric spheres in air are briefly discussed.Comment: 13 pages, 4 figs., RevTex, two references added. For more info see http://www.amolf.nl/external/wwwlab/atoms/theory/index.htm

    Multiscale - Patient-Specific Artery and Atherogenesis Models

    Get PDF
    In this work, we present a platform for the development of multiscale patient-specific artery and atherogenesis models. The platform, called ARTool, integrates technologies of 3-D image reconstruction from various image modalities, blood flow and biological models of mass transfer, plaque characterization, and plaque growth. Patient images are acquired for the development of the 3-D model of the patient specific arteries. Then, blood flow ismodeled within the arterial models for the calculation of the wall shear stress distribution (WSS). WSS is combined with other patient-specific parameters for the development of the plaque progression models. Real-time simulation can be performed for same cases in grid environment. The platform is evaluated using both animal and human data

    Accurate evaluation of the interstitial KKR-Green function

    Full text link
    It is shown that the Brillouin zone integral for the interstitial KKR-Green function can be evaluated accurately by taking proper care of the free-electron singularities in the integrand. The proposed method combines two recently developed methods, a supermatrix method and a subtraction method. This combination appears to provide a major improvement compared with an earlier proposal based on the subtraction method only. By this the barrier preventing the study of important interstitial-like defects, such as an electromigrating atom halfway along its jump path, can be considered as being razed.Comment: 23 pages, RevTe

    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors

    Get PDF
    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors. Am J Physiol Heart Circ Physiol 304: H1455-H1470, 2013. First published March 15, 2013; doi:10.1152/ajpheart.00539.2012.-Atherosclerosis is a systemic disease with local manifestations. Low-density lipoprotein (LDL) accumulation in the subendothelial layer is one of the hallmarks of atherosclerosis onset and ignites plaque development and progression. Blood flow-induced endothelial shear stress (ESS) is causally related to the heterogenic distribution of atherosclerotic lesions and critically affects LDL deposition in the vessel wall. In this work we modeled blood flow and LDL transport in the coronary arterial wall and investigated the influence of several hemodynamic and biological factors that may regulate LDL accumulation. We used a three-dimensional model of a stenosed right coronary artery reconstructed from angiographic and intravascular ultrasound patient data. We also reconstructed a second model after restoring the patency of the stenosed lumen to its nondiseased state to assess the effect of the stenosis on LDL accumulation

    Light scattering from disordered overlayers of metallic nanoparticles

    Full text link
    We develop a theory for light scattering from a disordered layer of metal nanoparticles resting on a sample. Averaging over different disorder realizations is done by a coherent potential approximation. The calculational scheme takes into account effects of retardation, multipole excitations, and interactions with the sample. We apply the theory to a system similar to the one studied experimentally by Stuart and Hall [Phys. Rev. Lett. {\bf 80}, 5663 (1998)] who used a layered Si/SiO2_2/Si sample. The calculated results agree rather well with the experimental ones. In particular we find conspicuous maxima in the scattering intensity at long wavelengths (much longer than those corresponding to plasmon resonances in the particles). We show that these maxima have their origin in interference phenomena in the layered sample.Comment: 19 pages, 12 figure

    A screen for hoxb1-regulated genes identifies ppp1r14al as a regulator of the rhombomere 4 Fgf-signaling center

    Get PDF
    AbstractSegmentation of the vertebrate hindbrain into multiple rhombomeres is essential for proper formation of the cerebellum, cranial nerves and cranial neural crest. Paralog group 1 (PG1) hox genes are expressed early in the caudal hindbrain and are required for rhombomere formation. Accordingly, loss of PG1 hox function disrupts development of caudal rhombomeres in model organisms and causes brainstem defects, associated with cognitive impairment, in humans. In spite of this important role for PG1 hox genes, transcriptional targets of PG1 proteins are not well characterized. Here we use ectopic expression together with embryonic dissection to identify novel targets of the zebrafish PG1 gene hoxb1b. Of 100 genes up-regulated by hoxb1b, 54 were examined and 25 were found to represent novel hoxb1b regulated hindbrain genes. The ppp1r14al gene was analyzed in greater detail and our results indicate that Hoxb1b is likely to directly regulate ppp1r14al expression in rhombomere 4. Furthermore, ppp1r14al is essential for establishment of the earliest hindbrain signaling-center in rhombomere 4 by regulating expression of fgf3

    Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation

    Get PDF
    We have used the locally self-consistent Green's function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine the Madelung potential energy of a random alloy in the single-site mean field approximation which makes the conventional single-site density-functional- theory coherent potential approximation (SS-DFT-CPA) method practically identical to the supercell LSGF method with a single-site local interaction zone that yields an exact solution of the DFT problem. We demonstrate that the basic mechanism which governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short-ranged. In the atomic sphere approximation, this screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site mean-filed approximation is outlined. We also derive the contribution of the screened Coulomb interactions to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure

    Slater-Pauling Behavior of the Half-Ferromagnetic Full-Heusler Alloys

    Full text link
    Using the full-potential screened Korringa-Kohn-Rostoker method we study the full-Heusler alloys based on Co, Fe, Rh and Ru. We show that many of these compounds show a half-metallic behavior, however in contrast to the half-Heusler alloys the energy gap in the minority band is extremely small. These full-Heusler compounds show a Slater-Pauling behavior and the total spin-magnetic moment per unit cell (M_t) scales with the total number of valence electrons (Z_t) following the rule: M_t=Z_t-24. We explain why the spin-down band contains exactly 12 electrons using arguments based on the group theory and show that this rule holds also for compounds with less than 24 valence electrons. Finally we discuss the deviations from this rule and the differences compared to the half-Heusler alloys.Comment: 10 pages, 8 figures, revised figure 3, new text adde
    corecore