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Screened Coulomb interactions in metallic alloys.
[. Universal screening in the atomic-sphere approximation
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Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 18 June 2001; revised manuscript received 23 April 2002; published 26 June 2002

We have used the locally self-consistent Green’s-functld®GF method in supercell calculations to es-
tablish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic
alloys with different compositions and degrees of order. This allows us to determine the Madelung potential
energy of a random alloy in the single-site, mean-field approximation. The Madelung potential makes density-
functional calculations by the conventional single-site, coherent potential approximation practically identical to
the more rigorous LSGF supercell results obtained with a single-site local interaction zone. We demonstrate
that the basic mechanism that governs the charge distribution is the screening of the net charges of the alloy
components that makes the direct Coulomb interactions short ranged. In the atomic-sphere approximation, this
screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A
formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site
mean-field approximation is outlined. We also derive the contribution of the screened Coulomb interactions to
the S formalism and the generalized perturbation method.

DOI: 10.1103/PhysRevB.66.024201 PACS nuniber71.23-k

[. INTRODUCTION One obvious solution to the problem is to use electroneu-
tral spheres(see, for instance, Ref. 13However, in the
The coherent potential approximati¢@PA),' > as imple- methods based on the atomic sphere approxima#sn)
mented on the basis of multiple-scattering thédgnd com-  this frequently leads to large sphere overlaps and a quite poor
bined with density-functional theoryDFT),®~° constitutes  description of the electronic structure, especially in the case
the basis forab inito calculations of the electronic structure of inhomogeneous systems, such as partially ordered alloys
and physical properties of random metallic alloys. This com-or surfaces with an inhomogeneous concentration profile.
bination of the CPA with DFT, or, in most cases, with the A more general solution can be found, however, in which
local-density approximation(LDA), seems to be quite the electrostatic potential is modified without making effec-
transparerit® leading to expressions for the one-electron po-tive media for each alloy component in contradiction to the
tential and total energy which are very similar to those forassumptions of the CPA. The way to do this is to introduce
ordered systems. However, there is, by now, a well-an additional shift of the one-electron potential due to the
recognized problefi~13with this description related to the electrostatic interaction of the electrons inside each atomic
fact that the atomic or “muffin-tin” spheres, whichrtifi- sphere with the missing charge distributed outside of the
cially divide the crystal into regions associated with particu-sphere and postulate that the interaction comes from the
lar alloy components, may possess nonzero net charges. boundary between the atomic sphere and the effective me-
The problem stems from the fact that the conventionaldium. Such a shift may be associated withiatnasite inter-

single-site(SS DFT-CPA method is based on the effective- action, which has no connection at all to the effective me-
medium model of a random alloy which considers only con-dium.
ditionally averaged quantities and leads to the use of the This is exactly what is done in the locally self-consistent
single-site approximation not only in the electronic structureGreen’s-function(LSGP method* where one goes beyond
part of the problem during the solution of the CPA equationsthe single-site approximation for Poisson’s equation by
but also in the DFT self-consistent loop in the calculations ofmeans of a supercell which models the spatial distribution of
the electrostatic contributions to the one-electron potentiathe atoms in a random alloy while a CPA effective medium is
and energy. The single-site approximation provides no inforused in the electronic structure calculations beyond a local
mation as to the charge distribution beyond the atomidnteraction zondLIZ). If the LIZ consists of only one atom,
sphere of each alloy component and, since the surroundinthe LSGF method becomes equivalent to the CPA method
effective medium is electroneutral, Poisson’s equation cannatith a properly defined electrostatic potential and enétgy.
be solved properly if the atomic spheres have nonzero ndh this case, however, each atom in the supercell has its own
charges. Hence to find the correct solution to Poisson’s equalectrostatic shift given by the Madelung potential from all
tion one must somehow describe the effect of the missinghe other atoms in the supercell while the effective medium
charge. Since the electron density inside each atomic sphei® the same for all atoms. It is clear that such an additional
is well defined, any such description may be associated witkhift for each alloy component does not interfere with the
a modification of the effective medium specifically feach ~ CPA because the CPA effective medium is determined on the
alloy component. This may be regarded as an inconsistendyasis of the one-electron potentials including these shifts and
since, in that case, the CPA and the electrostatic part of theecause the CPA itself does not impose any restriction on the
DFT are based on different effective media. one-electron potentials of the alloy components.
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Following the above arguments two groups have proposed The paper is organized as follows. In Sec. Il we outline
an ad hocexpression for the electrostatic shift of the one-the main concepts behind the LSGF used in this work and
electron potential due to nonzero net charges in the atomithe details of the calculations. In Sec. Ill we present a prag-
spheres of the allo§-'2*® Although the basic models are matic solution to the problem of finding the Madelung shift
seemingly different and based on different observations, eiin SS-DFT calculations on the basis of the average values of
ther (i) the net charge of an impurity in a metal is screenedthe net charges and Coulomb shiftg;) and (V;), from
beyond the first coordination shéftl’ or (ii) the net charge supercell calculations. We also demonstrate that the linear
of an alloy component is proportional to the number of therelation between the net charggs and the corresponding
nearest neighbors of the opposite tyfehey lead to exactly Coulomb shiftsV; of the alloy components discovered for
the same expression for the one-electron potential, i.e.,  metallic alloys by Faulkneet al?® is practically universal in
e%q; the effective-medium approach for the Green’s function. This
R (1) means that the response of the electron system to the Cou-

1 lomb field is linear and universal in such systems, and that
where V; is the additional electrostatic shift of the one- the screening must be universal too. That this is indeed the
electron potential of théth alloy component of net charge ~ case is demonstrated in Sec. IV where we calculate the dis-
and Rl is the radius of the first coordination shell. tribution of the Screening Charge in several SyStemS and show

In fact, the models described above are practica“y identiinat it is almost independent of the crystal structure, the aIon
cal to the model proposed more than three decade$'&jo ~ constituents, and the composition.
account for charge-transfer effects in the self-consistent Har- In Sec. V we present a formalism for the screened Cou-
tree scheme based on the tight-binding CPA. In this schem@mb interactions in the single-site, mean-field approach for
the variation of thdéth atom energy levee; is proportional  the electrostatic potential and energy and demonstrate that

Vi:_

to the corresponding charge transfar, i.e., de=lq,, the conventional assumption of a vanishing Madelung poten-
wherel is some averagtra-atomic Coulomb interaction. fial and energy is not valid in general. Instead, one must
The non-self-consistent limit Corresponds |tg0’ while | include an additional term due otrasite interactions which

= provides local neutralit}® In the present context one are, in fact, exactly the screened Coulomb interactions. We

may identify Se; with V; and it therefore follows that @lso discuss the ordering contribution to the Madelung en-

—e?/R, may be considered an intrasite Coulomb interaction €9y and show why the screening contribution may be ob-
Although there is at least some consensus concerning tﬁ@lneq in supercell calculations for ordere_d structures. The

definition of the additional electrostatic shiff), which gives ~ contribution from the screened Coulomb interaction to the

charge transfers quite close to the values obtained in supegéneralized perturbation method and ®@ formalism is

cell calculation€® different workers do not agree on the cor- @ls0 determined. Finally, in Sec. VI, we demonstrate that the

responding electrostatic contribution to the total energy ofOtal energy of a random alloy may be reproduced exactly in

the random alloy. Some completely deny even the possib”it)ﬁlngle-_sne CPA-DFT calcul_at|ons with corrections due to the

of having such a term in a “consistent’” SS-DFT-CPA SCreening intrasite interaction.

theory’>?? while others argue about the details of how this

term should be define:*22324t would seem that the pres- Il. METHODOLOGY

ently suggested models of charge-transfer effects in the

single-site approximation to the electrostatic problem, except

the trivial elimination of the net charges by adjusting the Inthis paper we will consider only such alloy systems that

radii of the atomic spheres of the alloy components, may ben an underlying crystal lattice with perfect translational

considered neither exact nor even “a consistent theory.” It issymmetry satisfy two conditionst) spatial homogeneity and

the main purpose of the present paper to shown that a coriii) no correlations between the one-electron potentials at

sistent SS-DFT-CPA theory including a correct description ofsufficiently large distances. For the Coulomb interactions in

the charge-transfer effects does indeed exist. a random alloy both conditions may be formulated explicitly
Here, we define the electrostatic shift of the one-electrorin terms of the average monopole electrostatic poteXkfiah

potential and the corresponding contribution to the total enthe atomic sphere around siteue to the charge distribution

ergy in a form which is very similar to that proposed by in all of the remaining systems. In an ordered alloy this po-

Korzhavyiet al**° as well as by Johnson and Pingkand  tential is the Madelung potential. Specifically, the first con-

which provides a rigorous solution to the electrostatic prob-dition means that any real-space average values of products

lem in the single-site approximation. The actual expressio®f potentials must be translationally invariant, i.e.,

for the electrostatic shift in the single-site model for Pois-

son’s equation includes one adjustable parameter, the value (ViVj- - Vig =(Ta(ViVj- - - Vi), 2

of which is to be obtained in supercell calculations by the . . B

LSGF method in which the Madelung problem is solved ex_v;/]here Ta gs thedt_rfinsl_atlon operator,f(r)=f(r+a), and

actly. It turns out that, as long as the ASA is used, the valué € second condition s

of the adjustable parameter is practically independent of lat- _

tice structure, volume, and alloy composition due to the act' ViVie ViTa(ViVim - -Va)) = (ViVy- - Vig{ViVim-- 'V”(>é)

that the screening of the electrostatic part of the problem, in

the ASA at least, is almost universal. for a—oo.

A. Spatial ergodicity and cluster expansion

024201-2
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According to Lifshitz et al?® the space formed by the the electronic structure calculations, which are performed
complete set of distinct realizations of the potentiabn the  separately for every atom in the supercell by means of the
lattice, the operatof,, and the property of spatial homoge- local interaction zone centered at each atom. Inside the LIZ
neity plays the same role in the theory of disorder as theéhe multiple-scattering equations are solved properly, while
phase space, the operator of dynamical evolution, and Liouthe region outside the LIZ is represented by the effective
ville’s theorem do in statistical mechanics. Moreover, ac-medium, which is usually taken to be the CPA effective me-
cording to Birkhoff's ergodic theorem, for any functional dium built on all the one-electron potentials in the supercell.
f[V;], whereV; is some random realization of the potential This means that every atom of the supercell “sees” only the
on the lattice we have CPA effective medium outside the LIZ, which according to

the CPA definition represents a random alloy. In other words,

1 _ the one-electron Green'’s function of the super¢st) ob-
A'Txﬁfgf[-ravi]dﬂ_<f[v‘]>‘ @ tained in LSGF calculations may be presentetf&s
i.e., phase-space and real-space averages are equffalent. sc 0 Liz
This equation constitutes the principle of spatial ergodicity, G _zi Gi +Z AGir&ii™ |, 6)

according to which all possible finite atomic arrangements
may be realized in a single infinite sample if the conditionswhereG? is the Green’ function of théth atom in the su-
(2) and (3) are satisfied. percell embedded in the CPA effective mediuG;; the
What makes the above principle work in practice is thecontribution toG? due to the presence of the specific atomic
fact that forself-averagingr “measurable” quantities which arrangements on the figufen the LIZ as specified by the
per definition have well-defined limits when the volume of correlation functioré:'# , which is equal to that of the super-
the system approaches infinity all the correlations of thecell £ if the figuref is circumscribed by the LIZ, i.e., it can
atomic distribution become unimportant at some distancge put inside the LIZ in such a way that one of its vertices
and hence the sample may be chosen finite. This may bgincides with the central atom of the LIZ, otherwigg”
formulated explicitly by means of the cluster expansion—qg
t_heqrerr‘i7 which defir_les the corr_esponding _measura_ble quan- Equation(6) clearly shows how the LSGF works, and in
tity in terms of the site occupation correlation functions, particular, how the effective-medium approach, represented
by Gio, is combined with the cluster or supercell approach,
1= 770+2 ks, (5) represented by the second term. It follows from E).that
f the LIZ allows one effectively to cut off the contributions
from the clusters which are not circumscribed by the (47
equivalent formulation in terms of effective interactions is
Jiven in Ref. 29. If the LIZ is single site, i.e., it consists of
only one atom (LIZ1), the contributions from the second
term in Eq.(6) vanish and we are left with the usual CPA or
depending on whether siteis occupied by one or the other pure effectiye-mediu_m approach to the electronic structure
component. problem. !t is 'FhIS smgle-_sne approach, referred to as SS-
LSGF, which will be used in most of the present paper. It has

According to Eq.(5) there are two practical ways of cal- )
culating the properties of a random system for which Wethe advantage over the usual SS-DFT-CPA method that Pois-

have& =0 and thusll,, 4= mo: (i) the cluster or supercell son’s equation is solved exactly within a given approxima-

: o tion for the form of the electron density.

approach, wheré;=0 is satisfied on average only for those .

clustersf for which 7;#0, or (i) the effective-medium ap- Note, however,_ that t_he LSGF _met_hod is by o means
proach, which directly gives-, from some knowledge of the restrlct_ed to the S|ngle-3|_te approximation.. In fact, it allows
alloy cbmponents The firs? approach is realized, for in-US to include local environment effects in the electronic
stance. in the so c-alled special quasirandom strucﬁé@ﬁ structure calculations for the figures circumscribed by the

: ; ; LIZ) _ gsc_ PSI ;
method® while the second approach is realized by the co-L!Z if On averageé{"'*/= §°=0 which is the case in a ran-

herent potential approximation where the real atoms are sutflom alloy. In this respect the LSGF method may be consid-
stituted by a specifically chosen effective medium on thef"ed _aSE|f-COHSIStenEmbe_ddedégluster metho®&CM) of
lattice. the kind proposed by Gonist al>™ more than two decades

ago. With a proper choice of the supercell used to model a
given random allo$’ the LSGF solves two major problems
of the ECM: (i) it provides a set of clusters to represent an
alloy with a given short-range order afid) it allows one to
The supercell and the effective-medium approaches arelose the DFT loop with the correct treatment of the electro-
combined into a single computational scheme in the locallystatics.
self-consistent Green’s-functioft. SGP method*?° In the There is one important point concerning the electronic
LSGF method the supercell approach is used to provide thstructure obtained in the LSGF with the CPA effective me-
correct solution to the Madelung problem for a given alloydium which should be mentioned: Despite the fact that it can
modeled by an appropriate supercell. It is also used in part ibe quantitatively accurate, it igualitatively different from

where 7, are the coefficients or interaction parametes,
=(6c;6j- - - 6cy) the correlation function of the figure or
clusterf which corresponds to a specific position of the site
i, j, andk in the lattice, andSc;=c;—(c;) is the fluctuation
of the site occupation numbecs taking on values 0 and 1

B. LSGF method: A combined
supercell-effective-medium approach
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the electronic structure which would result from direct super-CPA or the LSGF methods with a CPA effective-medium.
cell calculations with periodic boundary conditions. That is, The ASA (no multipole corrections to the Madelung poten-
the electronic spectrum in the LSGF-CPA method is alwaydial and energyhas been used in the electrostatic part of the
complex, unless all the atoms are equivalent in the supercefiroblem. The integration of the Green’s function over energy
(pure metal or the size of the LIZ is infinite. Thus in the was performed in the complex plane over 16—20 energy
LSGF-CPA the electronic structure of amdered alloy is  points on a semicircular contour. The local-density approxi-
never correct, although it may be calculated with arbitrarilymation was used in the DFT part with the Perdew and
high accuracy. On the other hand, since Blochs’ theorem iZungef® parametrization of the results by Ceperly and
not applied to the supercell during the electronic structureAlder3*

calculations, the LSGF method is a perfect tool for calculat-

ing SQS as opposed to the ordinary band-structure methods, 1. NET CHARGE AND MADELUNG POTENTIAL

which in this case lead to a real, i.e., qualitatively incorrect, IN METALLIC ALLOYS

electronic structure of the random alloys.

Here we discuss a pragmatic solution to the following
problem: Can one devise a Madelung potential for the alloy
components to be used in SS-DFT-CPA calculations such
that the charge-transfer effects, i.e., the net charges of the

It is possible to obtain the Madelung potential and energyalloy components, are consistent with those obtained in SS-
by a combined superceltluste) and effective-medium ap- LSGF calculations where charge-transfer effects are treated
proach similar to that used in the Green’s-function approaclproperly? The fact that such a potential can be found may
to the electronic structure problem within the LSGF method seem surprising in view of the principal differences between
However, this requires some knowledge of the charge-chargise LSGF and the SS-DFT-CPA methods. In the LSGF
correlations or the screening in the alloy. Hence the only wayapproach all the atoms in the supercell are different due to
to solve the problem is to use a supercell model with theheir different local environment while in the usual SS-DFT-
Madelung potential and energy determined exactly from théCPA approach one deals only with average quantities, i.e.,
bare electrostatic interactions, as it is usually done. Herejn the terminology of Ref. 35, the LSGF supercell approach
another problem arises: The supercell should be constructds equivalent to thgolymorphouamodel of the alloy while
such as to provide zero correlation functions up to the disthe effective-medium approach is equivalent to i@mor-
tance where the net charges of the alloy components beconpdiousmodel. However, it is obvious that this can be dame
uncorrelated or completely screened. average

In the calculations presented below we assume at the out- It was discovered by Faulknet al?® from supercell cal-
set the existence of a short-range screening which occurlations that the net charges on different siteg , and the
over the distance of the first several coordination shells. Thisorresponding Madelung potentiafs obey a linear relation-
assumption is based on results obtained by the chargehip. In Fig. 1 we show such @V relation for a 512-atom
correlated model® on single-impurity calculation®'” as  supercell which models a randomsflis, alloy on an un-
well as on the most recent LSGF calculations by Ujfalussyderlying fcc lattice. For comparison we also show the charge
et al? The latter authors demonstrated that a 16-atom supeand Madelung shift for AlLi in the ordereid1, structure. All
cell for an fcc equiatomic random alloy, in which the SRO results are obtained by LSGF calculations with the CPA
parameter at the eighth coordination shell must be equal to éffective medium in(i) the single-site approximation for the
due to the translation symmetry, i.e., all the atoms in theelectronic part of the problem, SS-LSGF, i.e., HZ, (upper
eighth coordination shell are the same as that at the centrglne) and (i) with the perturbation in the electronic struc-
site, yields practically the same average charge transfer andre caused by the local environment up to the second coor-
total energy as a 250-atom supercell, in which the SRO padination shell, i.e., embedded clustééC)-LSGF, LIZ=3
rameter at the eighth coordination shell corresponding to &ower pane), included in the Green'’s function. For random
random number generator distribution of the alloy compo-alloys the inclusion of more distant coordination shells do
nents on the lattice should bel (see also Ref. 31 not affect the results significantly and thus the EZ results

Thus in all the random alloys considered below the distri-may be considered to be converged in the LIZ size.
bution of the atoms in the supercell was chosen such that the The most striking feature of theV relation obtained in
SRO parameter®r pair-correlation function%@) were ex- the SS-LSGF calculations is the perfect alignment ofghe
actly zero at least in the first six coordination shells andpoints along two almost straight lines, one for each alloy
small (not greater than 0.01 in absolute valug to the component. This is, in fact, very similar to what has been
eighth coordination shell. Although the multisite correlationobserved by Pinsk in model calculations using the
functions have not been optimized, they should not play a’homas-Fermi approximation. Furthermore, a change of the
significant role in the ASA where only monopole intersite ratio of the atomic sphere radii of the alloy components,
Coulomb interactions are taken into account. =S/, leads to a rescaling of thegV points. Hence for a

The electronic structure calculations were in all cases perspecific ratio,r =1.12 in the present case, tlig/ relation
formed in the scalar relativistic approximation by the collapses into the single pointq(V)=(0,0). The existence
Korringa-Kohn-RostokefKKR)-ASA techniqué? with anss, of this point in the SS-LSGF is a consequence of the fact that
p, andd basis in the framework of either the usual SS-DFT-all Al atoms as well as all Li atoms become indistinguishable

C. Choice of the supercell in the LSGF
and details of the calculations
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04 mately the correct solution to the supercell or polymorphous
¢ Singlssits Uiz} *F] model of a random alloy.
S e The twoqV points for the orderetl 1, structure are seen
02| . L, r=1 | to fall on theqV lines for the random alloy as already noted
. * f:g;’yjnga in Ref. 25, and, in fact, all the points on thgV relation
% ®0-0 obtained by the SS-LSGF method may be reproduced by a
0| \o ] series of ordinary SS-DFT-CPA calculations, by using the
. shift of the one-electron potential defined in a way similar to
0 " Eq. (1), i.e.,
Vi=—«a ﬂ (7)
I S ’
-0.4 : : : : : )
. s where g; is the net charge of the alloy componenssthe
& 3 LIz=3 Wigner-Seitz radius, ana a parameter which may be varied
=3 o2l | arbitrarily in the SS-DFT-CPA calculations without specify-
== o ing its physical meaning. However, it is important to note
or=1,Liz=1 u % that o= — corresponds to the electroneutral cage=0)
G | oreii L3 %“{\ | and a=0 to the limit where there is no response of the
O<qus, LIZ=3 system to charge-transfer effects. As we will see later, the
EH Liz=1 A i values of the net chargeg), obtained in the SS-DFT-CPA
o2 | ’ ® 1 calculations withw=0 are important scaling parameters. It is
also useful to note that for thd.1l, structure aLy,
= =0.8811575' and in the screened impurity modél)
0.4 ‘ ‘ ‘ ‘ ‘ agy=0.552669 and 0.568 542 for the fcc and bcc crystal
-06 -04 -02 00 02 04 06 structures, respectively.
q Figure 1 shows theV relation, indicated by the black

line, obtained in the SS-DFT-CPA calculations including Eq.
(7) with « varying from —1.5 to 5 together with the SS-
LSGF results, gray circles. It is clearly seen that igwmor-
phousand polymorphous gMelations coincide, and this al-
lows one to make an isomorphous model consistent with the

if the net charges of the alloy components are zero: Th&olymorphous results. The point is that all the net charges
difference between the atoms caused by local environmer@nd corresponding Coulomb shifts in the polymorphous
effects is solely due to the Madelung shift, which is zero inmodel have significance only in terms of the average values
this case. Thus for this particular choice mthe polymor- ~ they produce. This is so, because every supercell has its own
phous model is identical to the usual isomorphous model, o€t of net charges and Madelung shifts and, in the case of an
the SS-LSGEF method is identical to the SS-DET-cpainfinite system, there is an infinite number of differey¥
method. points. Their average value&y;) and(V;), however, have a

On the other hand, it is clear that the two models are nowell-defined physical meaning as conditional averages of
equivalent when local environment effects are included irself-averaging quantities, and thus it is the averég¥)
the electronic structure part of the LSGF method, i.e, foPoint which must be reproduced by the isomorphous model.
LIZ>1. This is demonstrated in the lower panel of Fig. 1Hence for a random alloy is given by
where the local environment effects are clearly seen to de-
stroy the strict alignment of thgV points and, as conse- _SK(Vy
quence, the possibility of choosing electroneutral atomic ara”d__gm'
spheres by a singlevalue. However, even if this were pos-
sible, all the atoms, or the corresponding one-electron poterNote that in a binary AB alloy, it clearly does not matter, for
tials, would still be different. which alloy component=A,B, a,,,q IS determined, since

The discussion of local environment effects is beyond theVa)/{ga)={Vg)/{gg).>> The same is true for multicompo-
scope of the present paper, and the results are included onfhgent alloys, but in this case, rather than being a trivial con-
to demonstrate thqualitative difference between the correct sequence of the charge neutrality condition, it follows from
results and those obtained by the LSGF method in the singléhe physical origin ofw;,,4, Which will be discussed in the
site approximation: Inclusion of intersite correlations in thenext two sections. For an fcc 4lLisg alloy atS=2.954 a.u.
electronic structure calculations leads to a real polymorphougre find from the LSGF calculations,,,q=0.60716.
description of random alloys which cannot be mimicked by a  Of course, the coincidence ofd;),{V;)) is a necessary
single-site LIZ. As a consequence, as we will show later thébut not sufficient condition for the equivalence of the iso-
SS-DFT-CPA method can reproduce the results of the SSnorphous and polymorphous models. The two models may
LSGF exactly, but will, in general, reproduce only approxi- be called equivalent only if the electronic structure of the

FIG. 1. The distribution of the net charggsand corresponding
Madelung potential¥/; in the 512-atom supercell, modeling a ran-
dom AlsgLisg alloy, orderedL1, alloy, and in the single-site CPA-
DFT calculations obtained by varying.

®
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Algoli,
6 -
— | SGF, average
o=0.60716
o=0
4 |
>
=
N
o
[m)]
2 n
-0.75 -0.5 -0.25 0 0.25
E-E: (Ry)
FIG. 2. The local density of states in thegflisy obtained by
the LSGF method with LIZ1 and by the single-site CPA-DFT
with different values ofw, 4 -
random alloy and its conditional averages agree. In Fig. 2 we 8 ‘ ‘
show that this is indeed the case: The local densities of states -0.75 -05 -0.25 0 0.25
(DOY) for the Al and Li atoms in AlgLisg calculated by the E-E: (Ry)

SS-DFT-CPA method coincide with the corresponding con- ) , ) ,
ditional average state densities obtained in the SS-LSGF cal, FLIIG ﬁé\;:e Sd'itf?érae':ﬁ\’ﬂrgfgjfnd de;Z'r%Zf:éifi;%rif'?éf;stn:i'r':]_
culations for the 512-atom supercell. For comparison we als%e?(; osfonearegt-neighbor L atomgsp

show the DOS obtained witlw=0 corresponding to the ’

“conventional” CPA. Although the latter differs from the ) . ) .

correct state density, it is obvious that neglecting the electrodniversalqV relation. Or in other words, the linear-response
static shift(7) has only a minor effect on the DOS. function y which gives the change |r12the net charg_e relative

The reason why the average state densities coincide is tH@ doi caused byV;, i.e., gi—doi=1/6°xV;S, is a universal
following: In the SS-LSGF method the difference betweenconstantin mgtalllc alloys in the ASA. From the res_ults pre-
the atoms of the same type comes only through the correiented in the figure we find thgt= —0.63. This unavoidably
sponding Madelung shift. A shift in potential leads to aleads to the existence of a single, uniqug,4 as witnessed
change in the charge transfer througbkewingof the local by the coincidence of all theqV) points in Fig. 4. Strictly
DOS as seen in Fig. 3. Therefore, when the conditionallysPeaking, the slopes of tlig/ lines are not exactly identical
averaged DOS is obtained, the skewing contributions fron®nd, in fact, a,ang varies from 0.6 in CihZng, and
the individual atomic sites caused Wywill cancel and leave  CusoNizsZnse to 0.615 in LiMg alloys, not included in the
only the DOS given by the averag¥;). Of course, this is figure. However, for most practical purposes the choice
true only in the SS-LSGF method (L#Z1). In fact, the local ~ @rana=0.607 provides a sufficiently accurate description of
environment effects in concentrated random alloys may inthe electronic structure of random alloys in the SS-DFT-CPA
fluence quite strongly the electronic structure of the centramethod in the ASA for the electrostatic part.
site of the LIZ.

To investigate how theV relation depends on the system
we show in Fig. 4qV relations for five different systems
including a Cu impurity in Pt $=3 a.u) and four random In the previous section we have, in effect, defined a pro-
alloys: fcc CygPtso (S=3 a.u), fcc Algglisg (S=2.954 a.u, cedure whereby SS-DFT-CPA calculations may provide a
bcc CuypZnsg (S=2.7 a.u), and ternary fcc CygNisZnsg  rigorous solution to the electrostatic problem in random al-
(S=2.65 a.u). In the plot all charges have been normalizedloys. The only requirements are that the Madelung $Rjfts
by qo; obtained in the no response limit, i.ex=0 or V; included and that the constadat,,,q is obtained from Eq(8)
=0, and all Madelung shifts have been normalizedjgyS.  with the average Madelung potential and net charges of the
To partly simplify the plot we have uséd;| in the normal-  alloy components determined in supercell calculations by the
izations, thereby separating tlog/ relations into two lines SS-LSGF method. In the derivation of the procedure we
rather than one. have used some general arguments which do not clarify the

The results presented in Fig. 4 show the existence of @hysical origin of the universal value of,5,q. However, it

IV. SCREENING CHARGE IN METALLIC ALLOYS
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@ Cu (fcc CuPt,) authors found extremely long-range correlations between the
S 02} (ffcc Zusﬁf’*so) Madelung potential at some particular site and the net
ol ((fgg Alfjl-ilff)) charges at the other sites. Since the Madelung shift on a site
4 0 Zn (bee Cug,Zng,) is proportional to the net charge on the site, this may happen
e Efcf:"gu“é”g)n) only if there are extremely long-ranged correlations between
*Ni (fec CugNi,iZn,) net charges or, in other words, there is no screening. How-
31 ﬁﬁc e(rf;ceouﬁoNi%an) ever, these results were obtained on the basis of summations
S Pt armnd G impurity of the direct orbare Coulomb interactions which is, at best,
o | «Cu impurity in Pt an ill-defined procedure, even mathematically.

To clarify the issue of screening we will perform the fol-
lowing computer experiment which will allow us to establish
the range of the net-charge correlations or the screening in
random alloys for one particular site. We set up a 512-atom
supercell which represents an fcc{gRi, random alloy(all
SRO parameters are equal to zero up to the sixth coordina-
tion shell and~0 for at least the next ten coordination shells
i and perform self-consistent SS-LSQEIZ=1) and EC-
LSGF (LIZ=3) calculations. We then substitute one Pt atom
| with one Cu atom in some site which, in general, may be
chosen arbitrarily. However, to keep the atomic distribution
as close as possible to the random distribution we chose a
site the local environment of which corresponds to the ran-
dom alloy (having equal number of Cu and Pt atorfer the
A first three coordination shells. We then repeat the self-
consistent LSGF calculations for the supercell with the sub-
\ stituted atom and find new values for the net charges in the
| 8 3 9§ 1 B § 4 supercell. It is clear that, when L#Z1, the difference be-
a/lay| tween the net charges in the two calculatiaks; , gives the

charges induced by the change of the net charge at the sub-
FIG. 4. qV relation scaled byq,, and the Wigner-Seits Stitution site(in the case of LIZ3 the local environment

1/6° V, S/|q,|
o

2|

radiusS. effects also effect the charge transgférhis charge is simply
the screening charge.
is clear that Eq(7) accounts for the missing chargeq; in In the upper panel of Fig. 5 we have plotted the normal-

the single-site Poisson equation for the atomic sphere. ized, induced charges,
Thus «,,,9 must be connected to the screening.

The linear character of theV relation indicates that the Q_:ﬂ 9)
screening in the impurity case as well as in the case of a " Aqgp’
random alloy may be very well described by linear-response ) . o o
theory. Owing to enhanced electron scattering at opposité_t the first eight coordmz_:\tlo_n shells around the substitution
regions of the Fermi-surface linear response predicts in théit€ i =0 for Cu-Pt substitution in a GgPt, random alloy
case of a free-electron gas the existence of long-range Fri@nd for Cu-Pt substitution in pure PS¢ 3 a.u) obtained in
del oscillations, which, however, decrease relatively fasth€ Single-site approximation for the electronic structure
(~r 3 with the distance. In a random alloy, on the other LIZ=1) as well as with local environment effe_cts mcluo!ed
hand, the screening is much more efficient due to the finitd-1Z=3). One may see that, while the local environment in a
lifetime of the Bloch states for the underlying crystal lattice PUre metal hardly affects the distribution of the net charges,
and the spatial distribution of the screening density decay¥ does introduce a dispersion in the distribution of the net
exponentially. In this respect the charge correlated qharges in thg random alloy, Whlch is q.une supstantlal at the
modef®3! adopted by Johnson and Pirikin the cc- and first coordl_natlon shell b_ut which practlca_llly disappears _be-
screened-CPA method or the equivalent screened impurityond the fifth coordination shell where, in fact, all the in-

mode2*24may be viewed as the first approximations to aduced charges almost vanish. o
description of the screening. To demonstrate that the net charge of the Cu “impurity

Based on the fact that a single impurity in a metallic hostindeed becomes screened we show in the lower panel of Fig.
is a particular case of a dilute random alloy, one would ex-> the total normalized induced charge in ittie shell,
pect, and the results for a single Cu impurity in Pt presented
in the previous section unambiguously indicate this, that the i E
screening effects in the two cases are similar. It is therefore Qtot—j:O ZQ;,
surprising that Faulkneet al® and Ujfalussyet al?? claim
that the screening in a random alloygealitativelydifferent ~ wherez; is the coordination number of thigh shell. It is
from that found in a single impurity system. In fact, theseseen tha); vanishes beyond the seventh coordination shell

(10
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FIG. 5. The distribution of the screening charge in the random _0.15
CusgPt, alloy and in Pt due to substitution of a Cu atom. 1 2 s 3 4
r

in all cases, and we conclude that the screening in a random FIG. 6. The distribution of the screening charge in different
alloy in the single-site approximation is practically the samemetals having different crystal structure and lattice parameter.

as the screening in the case of a single impurity in & purgomenon. Hence it is worthwhile to discuss the origin of
metal. There are neither qualitative nor quantitative differ-sych a universality in both the screening and the response
ences between the impurity and the alloy cases. function.

In the upper panel of Fig. 6 we show the distribution of  First of all, it was understood a long time ago that the net
the screening charg@ot to be confused with the screening charges in the atomic spheres of the alloy components have
density the screening charge is, in fact, the screening densityery little in common with the charger transfer in terms of
integrated in the corresponding atomic sphdoe a Cu im-  the redistribution of the electron charge between the alloy
purity in fcc, bee, and bet Pt plotted as a function of the componentdsee, for instance Ref. 38Even in the case of
distance from the impurity site in units of the Wigner—Seitsthe so-called ionic solids the self-consistent charge distribu-

radiusS It is clear that the screening charae follows a sin Ietion is very close to that obtained from a linear superposition
9 9 9€f the free-atom electron-densiti®and this is the reason for

common curve which does not depend on the structure. Ithe success of the charge-correlated moié, which the

fact, by changing the/a ratio in the bct structure one may net charge is proportional to the number of nearest neighbors
completely fill the remaining gaps in the calculated curve. Inof the opposite typésee also Ref. 31

the lower panel of the figure we have collected the results for \what we are seeing is basically a size effect: The net
the distribution of the screening charges in seven differengharges originate from the redistribution of the electron den-
systems including such hosts as Pt, Al, Cu, V, Na, and K. I&ity in theinterstitial region between the atomic spheres. The
appears that the screening in metallic alloys depends neithetectron density in metals and their alloys in this region is
on the crystal structure nor on the nature of the alloy comvery smooth and may be well described by a free-electron
ponents, at least, when described within the ASA. model, even for transition-metal alloys. The interstitial den-

The universal picture of the screening in alloy systemssity is much easier to perturb than the density closer to the
found above is partly destroyed when the electrostatics iatomic nuclei and it participates in the screening. On this
treated more correctly, for instance by including multipolebasis one may, in fact, develop a model based on linear-
moment contributions to the one electron Madelung potentiatesponse theory which leads to a semianalytical description
and energy. However, the ASA still gives a qualitatively cor-of the universal screening. However, this is beyond the scope
rect picture and catches the main physics behind the phef the present paper.
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The calculated distribution of the screening net chargeeomponents approaches zero. In this case, the contribution to
may be used to obtain the screening contribution to the onahe electronic structure due to the local environment effects
electron potential in the single-site model for the Poissorbecomes negligible, and the electronic structure of the impu-

equation given by Eq(7) with a equal to rity obtained by the single-site or the cluster Dyson equations
become almost identical. Such an effect may be seen, for
) 2 Qi 11 instance, in Fig. 5: The dispersion of the screening net charge

Fser™ 2 , 4 ﬁ, (1) found in the concentrated alloy case, i.e.zPt, (LIZ=3),

vanishes in the case of a Cu impurity in Pt. The effect is, in
where R; is the radius of theith shell with coordination fact, the origin of the increasing accuracy of the CPA with
numberz; . Using the results for the screening cha@ein decreasing concentration of one of the alloy components.
the case of Cu-Pt substitution for one particular éitet on

averagein the. CugPtsg random.alloy we finq frqm Eqll) V. EORMALISM FOR THE SCREENED COULOMB
after summation up to the (_alghth coordination shell that INTERACTIONS

as.=0.60572. At the same time, the average values of the

net charges and the Madelung potentidig) and (V), in A. Madelung energy of a random alloy in the single-site
conjunction with Eq.(8) gives a,,,q=0.60530. That is, mean-field approximation (effective-medium approach

@rang= @scr- Since there is only one effective medium inthe  The existence of on-site or intrasite interactions of the
supercell SS-LSGF calculations, it is obvious that the screening discussed in connection with E¢LD) must lead to a
ing is the same for all the sites and thus should not depend afodified description of the electrostatics of random alloys in
the alloy component, that is, the rat{®/;)/(q;) does not the single-site mean-field approximation, where allAhand
depend on the alloy components. _ _ all the B atoms are represented only by the appropriate con-
~ The important point here is the fact that, sineg;; is  ditional averages. It has been shown by Krdskbat in a
given by the electrostatic interactions of the net charge '”S'dgystem with randomly distributel andB ions of chargez

a sphere with its own screeniiigr missing charge, ithas an andz;, respectively, embedded in a medium of compensat-

action depends almost entirely on the type of the system or
effective medium and very little on the structure. In contrast,
the parametery (see the previous sectibwhich allows

one to perform SS-DFT-CPA calculatioidentical to those ) ) )
of the SS-LSGF for thé 1, structure depends solely on the Whereay is the Madelung constant of the underlying lattice,

2
e ap~
d— M
Eragd SS ZZ, (] 2)

geometry of the_1, structure. S the radius of the Wigner-Seitz sphere, aAdhe average
That is, there is no connection between the Madelungharge equal teZ,+(1—c)Zg.
constant for an ordered structure angl.,: The former de- It is obvious that Eq(12) is valid also in the CPA-DFT if

scribes thebare electrostatic interactions between the netone substitutes the ion charggsby the net charges; of the
charges on different sites, while the latter arises due to thatomic spheres. In the ASA the average chacgg+ (1
screening in the system and describes the real response of thec)qg is zero, and in this particular approximation the
electronic subsystem to the perturbation, which “dresses’Madelung energy vanishes. Note, however, that it vanishes
the intersite Coulomb interactions making them short rangeneither in inhomogeneous systéth¥ nor in the MT
The reason why it is possible to obtain., from supercell approximatior?,
calculations for the completely ordered structures is the fact We will now reformulate the above description by includ-
that at the large distances, where the atomic-distribution coiing the on-site screened Coulomb interactions. However, in-
relation functions are not zero anymore due to the translastead of simply adding the appropriate on-site term to Eq.
tional symmetry of the supercell, the real net charges havél2), we will use concentration wave theory to clarify the
become screened or uncorrelated. We will return to this poineffective-medium approach to the Madelung energy in or-
in the next section, but here we would like to comment ondered alloys. Assuming that only on-site and pairwise inter-
the use of the single-site approximation in the Green'’s funcactions are important the Hamiltonian of a binakyB,_.
tion calculations. alloy may be written as

Our LSGF calculations of impurities in different metals
indicate that the problems observed in the single-site Green’s _ A Biq_
function impurity calculations by StefanHua?]d Drittler H ; [eoCrt €o(1=Cr)]
et al*° do not originate from the single-site approximation
for the Dyson equation, but from Poisson’s equation, which
these authors also solve in the single-site approximation. The
use of the screening electrostatic shift for the one-electron AB BB
potential allows one to solve the impurity problem in the T URR CR(1—Cr/) T UgR (1—Cr)(1—CRr/)], (13
single-site Green’s function formalism in the ASA or in the X ) ) o ) . ]
muffin-tin (MT) approximation almost exactly. This is so wheree; are on-site or intrasite interactions, which we will
because the impurity case corresponds to the dilute limit of @ssume depend only on the type of atom on Bjte s, are
random alloy where the concentration of one of the alloypair potentials acting betweex andY atoms at siteR and

1
AA AB
+ = E [URR’CRCR’+URR'(1_CR)CR’
2 R#R’
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R’, respectively, andy is the site-occupation operator tak-

ing on the value 1 if there is aA atom on siteR and 0
otherwise. Usingscgr, defined bycg=c+ écr, we may re-
write the Hamiltonian in the equivalent form

1
H=—- 2 VRR’ 5CR5CR!
2 R,R,

1
+3 E [c2vhn +2¢(1—c)ups +(1—c)2vin ],
R#R

(14

where the first term includes the intrasite interactidd (
:R’)'

Veo=2| ——eh+ EEB (195
R=0 (1_0) 0 c 0
as well as the intersite interactionR£R’),
VRR’ :UFAzg, +Ug:i/ - 2Ué§, . (16)

Upon Fourier transformation of the first term we find

N
— *
H= _ZQBszqu V(q)cch

> [chd +2c(1-cluas +(1-c)wEs ],

+_
2 R#R’

7
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2
€" ager

2 'S

2
Ascr

_ e 2
=- ?C(l_C)T(QA_qB)

Erand—ss:

SCr—ss_
Mad

Mad

[cqa+(1—c)g3]

=c(1-c)V4(R=0). (20

This is the result obtained by Maget al° more than a
decade ago in the so-called charge-correlated model and later
by Korzhavyiet al*® and by Johnson and Pinskin their
“screened” models for the single-site CPA-DFT. The differ-
ence between these models lies only in the way the param-
eter ag,, is determinedfrom 0.439 721 2 for bcc in Ref. 12
to 0.542 820 38 for fcc in Ref. 20A discussion of the issues
involved may be found in Refs. 12, 20, 23, 24 and 31.

In the supercell aproach, of course, only intersite Cou-
lomb interactions of the net charges contribute to the Made-
lung energy. The existence of a nonzero Madelung energy in
that case is a consequence of the dispersion in the net
charges of theA and B components due to different local
environment at every site. The difference in the net charges
is the result of the fact that the screening charge density goes
beond the atomic spheres of the alloy components and there-
fore sites with different local environments will have a dif-
ferent amount of screening charge. To include the dispersion
of charges which exist in the supercell model, one must re-
formulate the single-site effective-medium model by adding
the corresponding on-site screening contribution to the usual

where the second term is the average contribution to thintersite part of the Hamiltonian.
energy due to pair interactions which in the case of direct

Coulomb ion-ion interactions is|,q,/|[R—R’| combined

with the corresponding contribution from the interaction be-

B. Configurational part of the Madelung energy and potential
in the effective-medium approach

tween the ions and the homogeneous compensating charge.

The second term is exactly E(L2).

The first term in Eq(17) is usually associated with the
configurational contribution to the energy of the system, bu
this is correct only if the contribution from intrasite interac-
tions is zero. It is easily evaluated in a completely rando

m

The reason why we reformulated the Hamiltonian in
terms of concentration waves is to show how to define cor-

fectly the configurational part of the energy, and in particular

the Madelung energy in the presence of on-site interactions.
This is an important issue since in some formalisms, such as

/ ; 2) 4244 .
alloy, where all the occupation numbers are uncorrelated angSeudopotential theory or t® formalism*~** v(q) is

thereforecch =c(1—c)/N, i.e., normalized to give the or-
dering energy per atom. One finds

fBqu V(g)cqcq =c(1—c)fBqu V()

=0gc(1—C)Vr_o, (18)

which according to Eq(13) is equal toceg+(1—C)eg.
It now remains to define the on-site interaction teghn
which results from the interaction of the net chargen the

already given a particular form and this may lead to prob-
lems with the correct definition of the configurational part of
the total energy. The point is that the intrasite interactibms
not contribute to theconfigurationalpart of the total energy
which in real space may be written ésere, we do not con-
sider the contribution from multisite interactiofs

> Vg CréCr . (21)

1
HcoanE
R#R’

Therefore if the configurational Hamiltonian is written in

alloy with the corresponding screening charge, in such a waterms ofV(q), e.g., in the concentration wave formalism, it

that ei) and the corresponding on-site Coulomb poteriial
given by Eq. (7) are consistent within DFT, i.e.V,
= Seyl 5

e Ascr
fo:—g?%z- (19
Using this definition the first term in the Hamiltonidth7)
may be written

must be corrected by the subtraction of the corresponding
intrasite interaction, i.e.,

1 1
Hconf=mf82dq M@)Cqq —5 (1 =C)Vr=g

1
:mfsqu[v(q)_VR_OJchq : (22)
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where we have used the sum rule for the concentration wave C. Effective-medium approach to the Madelung potential
densitycqc; : [ezdq V(Q) cqca‘ =Q0g,c(1-c). and energy of a random alloy resented by a supercell

The subtraction of the intrasite term in EQ2) is crucial The reason that it was possible to calculatg, on the
for obtaining the correct Orderigg Snergy in pseudopotentiahasis of theorderedstructures is the fact that in an ordered
theory and in thes® formalisnf?~**as well as for making pinary alloy with onlytwo nonequivalent sublattices one has
the theory consistent. Let us, for instance, consider thgn exact cancellation of the screening contribution to the
Madelung energy of a binary, completely ordered alloy with\jadelung energy and potential. This does not happen, how-
two nonequivalent sublattices. It is easy to show that itssyer, in the general case of a supercell with2 nonequiva-
Madelung energy may be presented in a form simil_ar to thajent sublattices. Fom=2, the Madelung energy in the
of the Madelung energy of the random alloy. For instanceeffective-medium approach may be written as the sum of the

the Madelung energy of thel, ordered phase is contribution from the intrasite screening interactions,
2y e a e’ «
L1y _ 0 2 fcc~o scr—sc_ _—  —scr 2
EM;fd__E?C(l_C)(qA_qB) to g 4 Mad ~ 5N S > q
(23
~ e age[ 1 ) 1 5
where the last term is zero in the ASA singe0 as in the ~2 5 |°N, ;A qiA+(1_C)|\|_B ;B Gis

random alloy case, but now ; is a constant which appears
due to the intersite Coulomb interactions. In the appendix of
Ref. 37 it is shown that, in facta s (qa—dg)?/S is the

Fourier transform of the effective direct electrostatic 'merac'whereNA andNg are the number oA andB atoms, respec-

tion at the corresponding superstructure vectr,;  ively and the ordering energy due to the intersite interac-

2
Ascr

¢ Gsu 2+ (1- 2 25)
x| # 5 —g [e{an +(1-c)ag)T),  (

=2m/a(100), i-euVes(kLlo):aLlo(QA_QB)Z/S- tions

On the other hancEkﬂlgd may also be found as the sum of o2
the electrostatic energy of the completely random alloy, AUpad=nc > vilax — ase) AQE . (26)
Ej2nd=ss given by Eq.(20) and the ordering energpU: 259 ' '
Eno=Elnd™*+ AU. Since the Madelung energy of the or- Here. ¥ is a normalizing coefficientq a constant due to

L1ln - . . . L. .
deredL1, alloy, E,2; is uniquely defined in terms of the thebareelectrostatic interactions between the net charges for

corresponding Madelung constant, which has nothing to dethe superstructure vectds which may be calculated from
with the screening in the alloy, it is obvious that a screeninghe Madelung constants), of the corresponding supercell
term must be present in the ordering eneddy to compen-  similar to thea ;  considered above, anii,. the difference

. . . d_
sate for the screening contribution Eyzg *. _ between the charges in the crests and in the troughs of the
Indeed, as shown in the appendix of Ref. 45 the orderingoncentration wave in the supercell. In the case of a binary
energy in thel 14 structure may be written in the form alloy with two nonequivalent sublattices, there is only éne
1 andAdy = (da—0dg).
AUMadzg 7°[Ved kLlo) — V. (R=0)], (24) If ay depends only on the structure and describebére

electrostatic interaction between net charges, then

from which it is easy to see that in the completely ordered‘dresses” these interactions according to the real charge dis-
state, where the long-range order paramejerl, the last tribution in the alloy(an equivalent description in real space
term in Eq.(24) is exactly the Madelung energy of a random in the charge correlated model is given by Wolverton and
alloy at the stoichiometric compositidic(1—c)=1/4], and  Zunger?’ who also show that the Madelung energy of the
thusEfand=ss+ AU = 1/8ar 1 (da— as)?/S. random alloy has intrasite charagtdf the net charges in the
This illustrates an important point: The ordering energysupercell are screenédr uncorre_late)jat distgnces less than
represented in reciprocal space in the concentration wav@alf the period of the concentration wave with wave ve&or
formalism must be corrected by the subtraction of the intrathenAqy =0 due to the destruction interference and the cor-
site term, otherwise the theory will not be consistent. Equaresponding contribution to the ordering energy vanishes. If
tion (22) gives the correct definition of the ordering energy the supercell includes only long-range concentration waves,
considered more thoroughly in the appendix of Ref. 45. Thehe corresponding ordering contribution to the Madelung po-
intrasite interaction must also be subtracted when one cortential and energy becomes zero.
siders the energy of short-range ord&RO effects, and Let us finally mention the fact that the Madelung energy
thus the correct Krivoglaz-Clapp-Moss expression must havef a random alloy obtained in supercell calculatid@8) is
V(q) — Vg, instead ofV(q), which is exactly the case in not equal to the Madelung energy in the single-site calcula-
Krivoglaz’s derivatior’® Note, however, that this problem tions, and thus it cannot be used to obtaig,. The reason is
does not exist if the Krivoglaz-Clapp-Moss expression issimply that the Madelung energy is not a self-averaging
used together with the so-called Onsager corretlipmo-  quantity. However, the Madelung potential is, and it is clear
vided that it is properly defined. that
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L. 2l same quantity after the exchange. A similar expression is
2 also valid in the case of multisite interactions, but this will
> B A B involve a more complex exchange of atoms and will not be
R 2 R___ considered here because the screened Coulomb interactions
S do not contribute to the effective multisite interactions in the
< ASA.
Within multiple-scattering theory as well as in the tight-
binding approximation a Green's-function formulation al-
FIG. 7. Two systems, whose O-site projected Coulomb energy isows both site and “path” decomposition of the electron den-
tq be used in the calculation of the screened effective interactions &ity and thereby makes it possible to write down an
distanceR. analytical expression for the one-electron contribution to the
n-site interactionsY(™(R), in the CPA®*® Concerning the
screened Coulomb interactions one must, however, proceed

€% age Qser
(V)= =2 S g =€t () =V, (27)
X =X

S differently. There are several ways to do so, but here we will
present a straightforward approach.
which allows one to use E@8) to obtainasc, in the super- In the sense of the CPA and single-site mean-field theory
cell calculations and shows why,,,q is exactly equal to e will use an effective-medium approach, assuming that at
scr- all sites, i.e., within the atomic spheres assigned to each site,
there is an electroneutral effective medium except at the two
D. Intersite screened Coulomb interactions sitesO andR under consideration. In those two sites we must

use the actual values of the net charges of the alloy compo-
nents, which in the effective-medium approach are the aver-
gage net chargeg, andqgg of the alloy components.

Although the screened Coulomb interactions have an in
trasite character, they may contribute to the effecipadr

intersite interactions of the kind obtained in the generalize In the first-oAncipl thods. h th t ch
perturbation method(GPM),"**® because the screening , ' € TIISt-principles metnods, however, these net charges
gepend on the specific choice of the size of the atomic

charge is located on several of the coordination shells aroun h d thus th t in princiol togeth ith th
each atom. This was, in fact, already recognized bySp eres and thus they must, In principie, go together wi €

Ducastellé® who derived the contribution to the GPM poten- corresponding screening cloud. Since we calculate the

tials from the screened Coulomb interactions in the frame?hange in the electrostatic energy of the two systems shown

work of the Hartree-Fock tight-binding CPA theory. in Fig. 7 projected onto sité due to the exchange & and

The existence of an additional electrostatic term due t(ﬂ?ﬁoms ;n Eos't'ontﬁiéveml:ﬁt mcltudr:e only ihggtergﬁtlon
the screening is also consistent with Andersen’s forcd' (N€ NEL charge at Siewi € net charge at site andits
theorent! which states that the change in the total energy O‘sqree_nlngcharge. That is, the interaction of the net (_:h_arge
a system due to some perturbation to first order is given b)‘/‘”th Its own screening charge must be exclu_deq as itis |n-.
the change in the sum of the one-electron energies obtaineccji”ded in the defmmon.of the sc.reened on-site interactions;
from frozen one-electron potentials plus the change of th ee Eq.11). Thus the first term in Eq(28) for %he sy_stem
electrostatic energy due to the perturbation. In fact, this lattePefore the exchange of atoms has been mage(R), is
contribution from the screened Coulomb interaction has been
completely neglected in a number of first-principles calcula- sCH oy 2 AR" | 5 Usr’
tions of GPM interaction&?-53Here we will therefore show Ei"(R)=e QAR,E:ZO r € qBR,Zio R (29)
how the screening contribution to the GPM potentials may
bg dgfingd and obtained on the basis of the calculated spatiglere,q;r: is either the net charge of théh componenty; if
distribution of the screening charge. _ R’'=R or the corresponding screening chargeRif~R. A

GPM:-like pair interactions, usually defined by E46)  similar expression may be written f@&°'(R), after the ex-
for a specific lattice vectoR, may be determined as the change of theA andB atoms in theR sites, i.e.,
site-projected part of the change in the total energy when two
atoms of different types in a completely random alloy are
exchanged between sites infini_tely far_ apart in such a way ESC(R)=e%q, > MJrequ M_ (30)
that their neighbors at the relative positiBnare of the op- rR'#z0 R’ rR'#0 R’
posite type after the exchange. This is schematically illus- ) ) )
trated in Fig. 7. That part of the total energy which should belhe resulting expression for the screened Coulomb interac-
accounted for is half the Site_decomposed total energy Writtlons which should be added to the usual one-electron term is

ten in terms of the intersite interactions or interatomic potentherefore

tials, i.e.,
e dar’ —dsr’ Ugr’ — dar’
1 Vel =50 X e 2 ——
V(R = S[EPR —EP(R)]. 28) 2\, R 70 R
2 ’
Here,E(ll) is the total energy due to pairwise interactions of :e_(qA_qB)z 2 Q(R"—RY) (31)
the unperturbed system projected onto site 0 Eﬁd is the 2 R'£0 R’ ’
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It is easy to see from Eqg31) and (11) that g (R=0)

= ager= @rang and thereforeVg (R=0) is exactly the on-
site screened interactions that defines the Madelung energy
of the binary alloy which has exactly the same fo(&0).
This on-site interaction must be included in the definition of
the S interactions'? as has been demonstrated in the pre-
vious section(see also Ref. 44 WhenR#0, V.. (R) de-
fines the intersite screened Coulomb interaction contribution
to the GPM-like effective interactions. Since the screening in
the ASA is practically universal these interactions have the
universal form presented in Fig. 8.

VI. TOTAL ENERGY IN THE SINGLE-SITE CPA
AND THE SUPERCELL LSGF METHODS

The fact that the Madelung energy of a random alloy de-
scribed either by the effective-medium model defined by the
SS-DFT-CPA method or by the supercell model in conjunc-
tion with the SS-LSGF method differ from each other has

FIG. 8. The intersite screened Coulomb effective interactionsh€ither consequences for the final result for the total energy
obtained from the normalized screening charge presented in Fig. ®f the random alloy nor even for the partial and local contri-

butions to the total energy. This follows simply from the fact

where Q(R) is the normalized screening charge defined inthat the density of states and its average local contributions
Eqg. (9), and where we have used the condition that theare the same in the two methods, as shown above.

screening does not depend on the type of the atom. Finally, In Table | we compare the total energy and its components
performing the summation in Ed31) one may define the
screened Coulomb interactions as

e’ zascr( R)

Vscr(R) = E(QA_ CIB)

(32

in a CuPt;p random alloy calculated by the SS-DFT-CPA
method withag.,=0.605 72 and by the SS-LSGF method on
the basis of a 512-atom supercell, in which the atomic posi-
tions of Cu and Pt have been chosen such that the SRO
parameters are equal to zero at the first seven coordination

TABLE I. The total energy(in Ry) of CusgPt;, random alloy and corresponding contributions obtained in
three different calculations: by the single-site CPA-DFT methed;CPA-DFT, in the 512-atom supercell
LSGF calculations with optimized atomic distribution, providing zero SRO parameters up to the seventh
coordination shell(LSGF-1), and with atomic configuration immediately after random number generator,
(LSGF-2., (Ecou=Eer-nuct Eer—eit Emad)-

Site Energy ss-CPA-DFT LSGF-1 LSGF-2
Cu
Kinetic 3360.076110 3360.076294 3360.077674
(Eel-nue) —7974.160832 —7974.157257 —7974.178557
(Eel—el) 1439.080777 1439.078359 1439.099272
(Emad) —0.004193 —0.005646 —0.005994
(Ecoun —6535.084248 —6535.084544 —6535.085279
(Exe) —130.026085 —130.026000 —130.026621
(Ecw) —3305.034222 —3305.034250 —3305.034226
Pt
Kinetic 42188.794140 42188.794273 42188.791806
(Eel-nue) —92747.101049 —92747.093691 —92747.030284
(Eel—el) 14378.917863 14378.911671 14378.849707
(Emad) —0.004193 —0.005533 —0.005472
(Ecoun —78368.187379 —78368.187553 —78368.186049
(Exe) —693.866856 —693.866786 —693.865919
(Epp) —36873.260095 —36873.260068 —36873.260162
Alloy Eiot —20089.147159 —20089.147159 —20089.147194
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shells (LSGF-1). The agreement between the two calcula- VIl. CONCLUSION

tions is seen to be excellent if one combines the electron- The screened Coulomb interactions which are due to the
nucleus, the electron-electron, and the Madelung contribu-

. = interaction between the net charge of an alloy component

tions to form a total Coulomb energye.qui=Ee-nuc : . : . s

Eop ot Eyag and its screening charge must be included in a consistent
el .

The accuracy of the SS-DFT-CPA method with the appro_smgle-sne mean-field theory of the electrostatics in random

riate screening contribution to the Madelung potential anaalloys. In this paper we have shown how this may be done
b 9 : . 9p and we have calculated the spatial distribution of the screen-
energy may be appreciated if one compares the results of

.a . . . . .
512-atom supercell calculation performed by the SS-LSGF'Y charge which in the ASA is found to be practically uni-
method (LSGF-2 where the distribution of the Cu and Pt

versal for homogeneous systems. A formalism that describes
. L the contribution from for the screened Coulomb interaction

atoms have not been optimized after the application of th

random number generator leading to quite small, but no

0 Madelung potential and energy as well as to the effective
zero, SRO parameters. The values of the SRO parameters flgrteractlons of the GPM-type is presented.

the first seven coordination shells are0.005208 (1),

0.026041(2), 0.007161(3), —0.014 323(4), —0.021 484
(5), 0.039062 %), —0.013 671 97), respectively, which are
approximately the same, as in the LSMS calculations in Ref. Valuable discussions with Dr. P. A. Korzhavyi, I. A. Abri-
54. The agreement between SS-DFT-CPA results and S%eosov, A. Yu. Lozovoi, Professor A. Gonis, and Professor S.
LSGF calculations with a properly chosen supercellFaulkner are greatly acknowledged. The center for Atomic-
(LSGF-)) is obviously better than between two SS-LSGF Scale Materials Physics is sponsored by the Danish National
calculations. Research Foundation.
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