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Screened Coulomb interactions in metallic alloys.
I. Universal screening in the atomic-sphere approximation

A. V. Ruban and H. L. Skriver
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
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We have used the locally self-consistent Green’s-function~LSGF! method in supercell calculations to es-
tablish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic
alloys with different compositions and degrees of order. This allows us to determine the Madelung potential
energy of a random alloy in the single-site, mean-field approximation. The Madelung potential makes density-
functional calculations by the conventional single-site, coherent potential approximation practically identical to
the more rigorous LSGF supercell results obtained with a single-site local interaction zone. We demonstrate
that the basic mechanism that governs the charge distribution is the screening of the net charges of the alloy
components that makes the direct Coulomb interactions short ranged. In the atomic-sphere approximation, this
screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A
formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site
mean-field approximation is outlined. We also derive the contribution of the screened Coulomb interactions to
the S(2) formalism and the generalized perturbation method.

DOI: 10.1103/PhysRevB.66.024201 PACS number~s!: 71.23.2k

I. INTRODUCTION

The coherent potential approximation~CPA!,1–3 as imple-
mented on the basis of multiple-scattering theory4,5 and com-
bined with density-functional theory~DFT!,6–9 constitutes
the basis forab inito calculations of the electronic structure
and physical properties of random metallic alloys. This com-
bination of the CPA with DFT, or, in most cases, with the
local-density approximation~LDA !, seems to be quite
transparent8,9 leading to expressions for the one-electron po-
tential and total energy which are very similar to those for
ordered systems. However, there is, by now, a well-
recognized problem10–13 with this description related to the
fact that the atomic or ‘‘muffin-tin’’ spheres, whichartifi-
cially divide the crystal into regions associated with particu-
lar alloy components, may possess nonzero net charges.

The problem stems from the fact that the conventional
single-site~SS! DFT-CPA method is based on the effective-
medium model of a random alloy which considers only con-
ditionally averaged quantities and leads to the use of the
single-site approximation not only in the electronic structure
part of the problem during the solution of the CPA equations,
but also in the DFT self-consistent loop in the calculations of
the electrostatic contributions to the one-electron potential
and energy. The single-site approximation provides no infor-
mation as to the charge distribution beyond the atomic
sphere of each alloy component and, since the surrounding
effective medium is electroneutral, Poisson’s equation cannot
be solved properly if the atomic spheres have nonzero net
charges. Hence to find the correct solution to Poisson’s equa-
tion one must somehow describe the effect of the missing
charge. Since the electron density inside each atomic sphere
is well defined, any such description may be associated with
a modification of the effective medium specifically foreach
alloy component. This may be regarded as an inconsistency
since, in that case, the CPA and the electrostatic part of the
DFT are based on different effective media.

One obvious solution to the problem is to use electroneu-
tral spheres~see, for instance, Ref. 13!. However, in the
methods based on the atomic sphere approximation~ASA!
this frequently leads to large sphere overlaps and a quite poor
description of the electronic structure, especially in the case
of inhomogeneous systems, such as partially ordered alloys
or surfaces with an inhomogeneous concentration profile.

A more general solution can be found, however, in which
the electrostatic potential is modified without making effec-
tive media for each alloy component in contradiction to the
assumptions of the CPA. The way to do this is to introduce
an additional shift of the one-electron potential due to the
electrostatic interaction of the electrons inside each atomic
sphere with the missing charge distributed outside of the
sphere and postulate that the interaction comes from the
boundary between the atomic sphere and the effective me-
dium. Such a shift may be associated with anintrasite inter-
action, which has no connection at all to the effective me-
dium.

This is exactly what is done in the locally self-consistent
Green’s-function~LSGF! method14 where one goes beyond
the single-site approximation for Poisson’s equation by
means of a supercell which models the spatial distribution of
the atoms in a random alloy while a CPA effective medium is
used in the electronic structure calculations beyond a local
interaction zone~LIZ !. If the LIZ consists of only one atom,
the LSGF method becomes equivalent to the CPA method
with a properly defined electrostatic potential and energy.14

In this case, however, each atom in the supercell has its own
electrostatic shift given by the Madelung potential from all
the other atoms in the supercell while the effective medium
is the same for all atoms. It is clear that such an additional
shift for each alloy component does not interfere with the
CPA because the CPA effective medium is determined on the
basis of the one-electron potentials including these shifts and
because the CPA itself does not impose any restriction on the
one-electron potentials of the alloy components.
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Following the above arguments two groups have proposed
an ad hocexpression for the electrostatic shift of the one-
electron potential due to nonzero net charges in the atomic
spheres of the alloy.11,12,15 Although the basic models are
seemingly different and based on different observations, ei-
ther ~i! the net charge of an impurity in a metal is screened
beyond the first coordination shell,16,17 or ~ii ! the net charge
of an alloy component is proportional to the number of the
nearest neighbors of the opposite type,10 they lead to exactly
the same expression for the one-electron potential, i.e.,

Vi52
e2qi

R1
, ~1!

where Vi is the additional electrostatic shift of the one-
electron potential of thei th alloy component of net chargeqi
andR1 is the radius of the first coordination shell.

In fact, the models described above are practically identi-
cal to the model proposed more than three decades ago18,19to
account for charge-transfer effects in the self-consistent Har-
tree scheme based on the tight-binding CPA. In this scheme
the variation of thei th atom energy levelde i is proportional
to the corresponding charge transferqi , i.e., de i5Iqi ,
where I is some averageintra-atomic Coulomb interaction.
The non-self-consistent limit corresponds toI 50, while I
5` provides local neutrality.19 In the present context one
may identify de i with Vi and it therefore follows that
2e2/R1 may be considered an intrasite Coulomb interaction.

Although there is at least some consensus concerning the
definition of the additional electrostatic shift~1!, which gives
charge transfers quite close to the values obtained in super-
cell calculations,20 different workers do not agree on the cor-
responding electrostatic contribution to the total energy of
the random alloy. Some completely deny even the possibility
of having such a term in a ‘‘consistent’’ SS-DFT-CPA
theory21,22 while others argue about the details of how this
term should be defined.10,12,23,24It would seem that the pres-
ently suggested models of charge-transfer effects in the
single-site approximation to the electrostatic problem, except
the trivial elimination of the net charges by adjusting the
radii of the atomic spheres of the alloy components, may be
considered neither exact nor even ‘‘a consistent theory.’’ It is
the main purpose of the present paper to shown that a con-
sistent SS-DFT-CPA theory including a correct description of
the charge-transfer effects does indeed exist.

Here, we define the electrostatic shift of the one-electron
potential and the corresponding contribution to the total en-
ergy in a form which is very similar to that proposed by
Korzhavyi et al.11,15 as well as by Johnson and Pinski12 and
which provides a rigorous solution to the electrostatic prob-
lem in the single-site approximation. The actual expression
for the electrostatic shift in the single-site model for Pois-
son’s equation includes one adjustable parameter, the value
of which is to be obtained in supercell calculations by the
LSGF method in which the Madelung problem is solved ex-
actly. It turns out that, as long as the ASA is used, the value
of the adjustable parameter is practically independent of lat-
tice structure, volume, and alloy composition due to the fact
that the screening of the electrostatic part of the problem, in
the ASA at least, is almost universal.

The paper is organized as follows. In Sec. II we outline
the main concepts behind the LSGF used in this work and
the details of the calculations. In Sec. III we present a prag-
matic solution to the problem of finding the Madelung shift
in SS-DFT calculations on the basis of the average values of
the net charges and Coulomb shifts,^qi& and ^Vi&, from
supercell calculations. We also demonstrate that the linear
relation between the net chargesqi and the corresponding
Coulomb shiftsVi of the alloy components discovered for
metallic alloys by Faulkneret al.25 is practically universal in
the effective-medium approach for the Green’s function. This
means that the response of the electron system to the Cou-
lomb field is linear and universal in such systems, and that
the screening must be universal too. That this is indeed the
case is demonstrated in Sec. IV where we calculate the dis-
tribution of the screening charge in several systems and show
that it is almost independent of the crystal structure, the alloy
constituents, and the composition.

In Sec. V we present a formalism for the screened Cou-
lomb interactions in the single-site, mean-field approach for
the electrostatic potential and energy and demonstrate that
the conventional assumption of a vanishing Madelung poten-
tial and energy is not valid in general. Instead, one must
include an additional term due tointrasite interactions which
are, in fact, exactly the screened Coulomb interactions. We
also discuss the ordering contribution to the Madelung en-
ergy and show why the screening contribution may be ob-
tained in supercell calculations for ordered structures. The
contribution from the screened Coulomb interaction to the
generalized perturbation method and theS(2) formalism is
also determined. Finally, in Sec. VI, we demonstrate that the
total energy of a random alloy may be reproduced exactly in
single-site CPA-DFT calculations with corrections due to the
screening intrasite interaction.

II. METHODOLOGY

A. Spatial ergodicity and cluster expansion

In this paper we will consider only such alloy systems that
on an underlying crystal lattice with perfect translational
symmetry satisfy two conditions:~i! spatial homogeneity and
~ii ! no correlations between the one-electron potentials at
sufficiently large distances. For the Coulomb interactions in
a random alloy both conditions may be formulated explicitly
in terms of the average monopole electrostatic potentialVi in
the atomic sphere around sitei due to the charge distribution
in all of the remaining systems. In an ordered alloy this po-
tential is the Madelung potential. Specifically, the first con-
dition means that any real-space average values of products
of potentials must be translationally invariant, i.e.,

^ViVj•••Vk&5^Ta~ViVj•••Vk!&, ~2!

where Ta is the translation operatorTaf (r )5 f (r 1a), and
the second condition is

^ViVj•••VkTa~VlVm•••Vn!&5^ViVj•••Vk&^VlVm•••Vn&,
~3!

for a→`.
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According to Lifshitz et al.26 the space formed by the
complete set of distinct realizations of the potentialVi on the
lattice, the operatorTa , and the property of spatial homoge-
neity plays the same role in the theory of disorder as the
phase space, the operator of dynamical evolution, and Liou-
ville’s theorem do in statistical mechanics. Moreover, ac-
cording to Birkhoff’s ergodic theorem, for any functional
f @Vi #, whereVi is some random realization of the potential
on the lattice we have

lim
V→`

1

VE
V

f @TaVi #dV5^ f @Vi #&, ~4!

i.e., phase-space and real-space averages are equivalent.26

This equation constitutes the principle of spatial ergodicity,
according to which all possible finite atomic arrangements
may be realized in a single infinite sample if the conditions
~2! and ~3! are satisfied.

What makes the above principle work in practice is the
fact that forself-averagingor ‘‘measurable’’ quantities which
per definition have well-defined limits when the volume of
the system approaches infinity all the correlations of the
atomic distribution become unimportant at some distance
and hence the sample may be chosen finite. This may be
formulated explicitly by means of the cluster expansion
theorem27 which defines the corresponding measurable quan-
tity in terms of the site occupation correlation functions,

P5p01(
f

p fj f , ~5!

wherepq are the coefficients or interaction parameters,j f
5^dcid j•••dck& the correlation function of the figure or
clusterf which corresponds to a specific position of the sites
i, j, andk in the lattice, anddci5ci2^ci& is the fluctuation
of the site occupation numbersci taking on values 0 and 1
depending on whether sitei is occupied by one or the other
component.

According to Eq.~5! there are two practical ways of cal-
culating the properties of a random system for which we
havej f50 and thusP rand5p0: ~i! the cluster or supercell
approach, wherej f50 is satisfied on average only for those
clustersf for which p fÞ0, or ~ii ! the effective-medium ap-
proach, which directly givesp0 from some knowledge of the
alloy components. The first approach is realized, for in-
stance, in the so-called special quasirandom structure~SQS!
method28 while the second approach is realized by the co-
herent potential approximation where the real atoms are sub-
stituted by a specifically chosen effective medium on the
lattice.

B. LSGF method: A combined
supercell–effective-medium approach

The supercell and the effective-medium approaches are
combined into a single computational scheme in the locally
self-consistent Green’s-function~LSGF! method.14,29 In the
LSGF method the supercell approach is used to provide the
correct solution to the Madelung problem for a given alloy
modeled by an appropriate supercell. It is also used in part in

the electronic structure calculations, which are performed
separately for every atom in the supercell by means of the
local interaction zone centered at each atom. Inside the LIZ
the multiple-scattering equations are solved properly, while
the region outside the LIZ is represented by the effective
medium, which is usually taken to be the CPA effective me-
dium built on all the one-electron potentials in the supercell.
This means that every atom of the supercell ‘‘sees’’ only the
CPA effective medium outside the LIZ, which according to
the CPA definition represents a random alloy. In other words,
the one-electron Green’s function of the supercell~sc! ob-
tained in LSGF calculations may be presented as14,29

Gsc5(
i

FGi
01(

f
DGi f j i f

LIZG , ~6!

whereGi
0 is the Green’ function of thei th atom in the su-

percell embedded in the CPA effective medium,DGi f the
contribution toGi

0 due to the presence of the specific atomic
arrangements on the figuref in the LIZ as specified by the
correlation functionj i f

LIZ , which is equal to that of the super-
cell j i f

sc if the figuref is circumscribed by the LIZ, i.e., it can
be put inside the LIZ in such a way that one of its vertices
coincides with the central atom of the LIZ, otherwisej i f

LIZ

50.
Equation~6! clearly shows how the LSGF works, and in

particular, how the effective-medium approach, represented
by Gi

0 , is combined with the cluster or supercell approach,
represented by the second term. It follows from Eq.~6! that
the LIZ allows one effectively to cut off the contributions
from the clusters which are not circumscribed by the LIZ~an
equivalent formulation in terms of effective interactions is
given in Ref. 29!. If the LIZ is single site, i.e., it consists of
only one atom (LIZ51), the contributions from the second
term in Eq.~6! vanish and we are left with the usual CPA or
pure effective-medium approach to the electronic structure
problem. It is this single-site approach, referred to as SS-
LSGF, which will be used in most of the present paper. It has
the advantage over the usual SS-DFT-CPA method that Pois-
son’s equation is solved exactly within a given approxima-
tion for the form of the electron density.

Note, however, that the LSGF method is by no means
restricted to the single-site approximation. In fact, it allows
us to include local environment effects in the electronic
structure calculations for the figures circumscribed by the
LIZ if on averagej f

^LIZ&5j f
sc50 which is the case in a ran-

dom alloy. In this respect the LSGF method may be consid-
ered aself-consistentembedded-cluster method~ECM! of
the kind proposed by Goniset al.30 more than two decades
ago. With a proper choice of the supercell used to model a
given random alloy29 the LSGF solves two major problems
of the ECM: ~i! it provides a set of clusters to represent an
alloy with a given short-range order and~ii ! it allows one to
close the DFT loop with the correct treatment of the electro-
statics.

There is one important point concerning the electronic
structure obtained in the LSGF with the CPA effective me-
dium which should be mentioned: Despite the fact that it can
be quantitatively accurate, it isqualitatively different from
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the electronic structure which would result from direct super-
cell calculations with periodic boundary conditions. That is,
the electronic spectrum in the LSGF-CPA method is always
complex, unless all the atoms are equivalent in the supercell
~pure metal! or the size of the LIZ is infinite. Thus in the
LSGF-CPA the electronic structure of anordered alloy is
never correct, although it may be calculated with arbitrarily
high accuracy. On the other hand, since Blochs’ theorem is
not applied to the supercell during the electronic structure
calculations, the LSGF method is a perfect tool for calculat-
ing SQS as opposed to the ordinary band-structure methods,
which in this case lead to a real, i.e., qualitatively incorrect,
electronic structure of the random alloys.

C. Choice of the supercell in the LSGF
and details of the calculations

It is possible to obtain the Madelung potential and energy
by a combined supercell~cluster! and effective-medium ap-
proach similar to that used in the Green’s-function approach
to the electronic structure problem within the LSGF method.
However, this requires some knowledge of the charge-charge
correlations or the screening in the alloy. Hence the only way
to solve the problem is to use a supercell model with the
Madelung potential and energy determined exactly from the
bare electrostatic interactions, as it is usually done. Here,
another problem arises: The supercell should be constructed
such as to provide zero correlation functions up to the dis-
tance where the net charges of the alloy components become
uncorrelated or completely screened.

In the calculations presented below we assume at the out-
set the existence of a short-range screening which occurs
over the distance of the first several coordination shells. This
assumption is based on results obtained by the charge-
correlated model,10 on single-impurity calculations,16,17 as
well as on the most recent LSGF calculations by Ujfalussy
et al.22 The latter authors demonstrated that a 16-atom super-
cell for an fcc equiatomic random alloy, in which the SRO
parameter at the eighth coordination shell must be equal to 1
due to the translation symmetry, i.e., all the atoms in the
eighth coordination shell are the same as that at the central
site, yields practically the same average charge transfer and
total energy as a 250-atom supercell, in which the SRO pa-
rameter at the eighth coordination shell corresponding to a
random number generator distribution of the alloy compo-
nents on the lattice should be!1 ~see also Ref. 31!.

Thus in all the random alloys considered below the distri-
bution of the atoms in the supercell was chosen such that the
SRO parameters~or pair-correlation functions,j f

(2)) were ex-
actly zero at least in the first six coordination shells and
small ~not greater than 0.01 in absolute value! up to the
eighth coordination shell. Although the multisite correlation
functions have not been optimized, they should not play a
significant role in the ASA where only monopole intersite
Coulomb interactions are taken into account.

The electronic structure calculations were in all cases per-
formed in the scalar relativistic approximation by the
Korringa-Kohn-Rostoker~KKR!-ASA technique32 with ans,
p, andd basis in the framework of either the usual SS-DFT-

CPA or the LSGF methods with a CPA effective-medium.
The ASA ~no multipole corrections to the Madelung poten-
tial and energy! has been used in the electrostatic part of the
problem. The integration of the Green’s function over energy
was performed in the complex plane over 16–20 energy
points on a semicircular contour. The local-density approxi-
mation was used in the DFT part with the Perdew and
Zunger33 parametrization of the results by Ceperly and
Alder.34

III. NET CHARGE AND MADELUNG POTENTIAL
IN METALLIC ALLOYS

Here we discuss a pragmatic solution to the following
problem: Can one devise a Madelung potential for the alloy
components to be used in SS-DFT-CPA calculations such
that the charge-transfer effects, i.e., the net charges of the
alloy components, are consistent with those obtained in SS-
LSGF calculations where charge-transfer effects are treated
properly? The fact that such a potential can be found may
seem surprising in view of the principal differences between
the LSGF and the SS-DFT-CPA methods. In the LSGF
approach all the atoms in the supercell are different due to
their different local environment while in the usual SS-DFT-
CPA approach one deals only with average quantities, i.e.,
in the terminology of Ref. 35, the LSGF supercell approach
is equivalent to thepolymorphousmodel of the alloy while
the effective-medium approach is equivalent to theisomor-
phousmodel. However, it is obvious that this can be doneon
average.

It was discovered by Faulkneret al.25 from supercell cal-
culations that the net charges on different sitesi, qi , and the
corresponding Madelung potentialsVi obey a linear relation-
ship. In Fig. 1 we show such aqV relation for a 512-atom
supercell which models a random Al50Li50 alloy on an un-
derlying fcc lattice. For comparison we also show the charge
and Madelung shift for AlLi in the orderedL10 structure. All
results are obtained by LSGF calculations with the CPA
effective medium in~i! the single-site approximation for the
electronic part of the problem, SS-LSGF, i.e., LIZ51, ~upper
panel! and ~ii ! with the perturbation in the electronic struc-
ture caused by the local environment up to the second coor-
dination shell, i.e., embedded cluster~EC!-LSGF, LIZ53
~lower panel!, included in the Green’s function. For random
alloys the inclusion of more distant coordination shells do
not affect the results significantly and thus the LIZ53 results
may be considered to be converged in the LIZ size.

The most striking feature of theqV relation obtained in
the SS-LSGF calculations is the perfect alignment of theqV
points along two almost straight lines, one for each alloy
component. This is, in fact, very similar to what has been
observed by Pinski36 in model calculations using the
Thomas-Fermi approximation. Furthermore, a change of the
ratio of the atomic sphere radii of the alloy components,r
5SAl /SLi , leads to a rescaling of theqV points. Hence for a
specific ratio,r 51.12 in the present case, theqV relation
collapses into the single point: (q,V)5(0,0). The existence
of this point in the SS-LSGF is a consequence of the fact that
all Al atoms as well as all Li atoms become indistinguishable
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if the net charges of the alloy components are zero: The
difference between the atoms caused by local environment
effects is solely due to the Madelung shift, which is zero in
this case. Thus for this particular choice ofr the polymor-
phous model is identical to the usual isomorphous model, or
the SS-LSGF method is identical to the SS-DFT-CPA
method.

On the other hand, it is clear that the two models are not
equivalent when local environment effects are included in
the electronic structure part of the LSGF method, i.e, for
LIZ.1. This is demonstrated in the lower panel of Fig. 1
where the local environment effects are clearly seen to de-
stroy the strict alignment of theqV points and, as conse-
quence, the possibility of choosing electroneutral atomic
spheres by a singler value. However, even if this were pos-
sible, all the atoms, or the corresponding one-electron poten-
tials, would still be different.

The discussion of local environment effects is beyond the
scope of the present paper, and the results are included only
to demonstrate thequalitativedifference between the correct
results and those obtained by the LSGF method in the single-
site approximation: Inclusion of intersite correlations in the
electronic structure calculations leads to a real polymorphous
description of random alloys which cannot be mimicked by a
single-site LIZ. As a consequence, as we will show later the
SS-DFT-CPA method can reproduce the results of the SS-
LSGF exactly, but will, in general, reproduce only approxi-

mately the correct solution to the supercell or polymorphous
model of a random alloy.

The twoqV points for the orderedL10 structure are seen
to fall on theqV lines for the random alloy as already noted
in Ref. 25!, and, in fact, all the points on theqV relation
obtained by the SS-LSGF method may be reproduced by a
series of ordinary SS-DFT-CPA calculations, by using the
shift of the one-electron potential defined in a way similar to
Eq. ~1!, i.e.,

Vi52a
e2qi

S
, ~7!

where qi is the net charge of the alloy components,S the
Wigner-Seitz radius, anda a parameter which may be varied
arbitrarily in the SS-DFT-CPA calculations without specify-
ing its physical meaning. However, it is important to note
that a52` corresponds to the electroneutral case (qi50)
and a50 to the limit where there is no response of the
system to charge-transfer effects. As we will see later, the
values of the net chargesq0i obtained in the SS-DFT-CPA
calculations witha50 are important scaling parameters. It is
also useful to note that for theL10 structure aL10

50.881 157 5,37 and in the screened impurity model~1!
aSIM50.552 669 and 0.568 542 for the fcc and bcc crystal
structures, respectively.

Figure 1 shows theqV relation, indicated by the black
line, obtained in the SS-DFT-CPA calculations including Eq.
~7! with a varying from 21.5 to 5 together with the SS-
LSGF results, gray circles. It is clearly seen that theisomor-
phousandpolymorphous qVrelations coincide, and this al-
lows one to make an isomorphous model consistent with the
polymorphous results. The point is that all the net charges
and corresponding Coulomb shifts in the polymorphous
model have significance only in terms of the average values
they produce. This is so, because every supercell has its own
set of net charges and Madelung shifts and, in the case of an
infinite system, there is an infinite number of differentqV
points. Their average values,^qi& and^Vi&, however, have a
well-defined physical meaning as conditional averages of
self-averaging quantities, and thus it is the average^qV&
point which must be reproduced by the isomorphous model.
Hence for a random alloya is given by

a rand52
S

e2

^Vi&

^qi&
. ~8!

Note that in a binary AB alloy, it clearly does not matter, for
which alloy componenti 5A,B, a rand is determined, since
^VA&/^qA&5^VB&/^qB&.25 The same is true for multicompo-
nent alloys, but in this case, rather than being a trivial con-
sequence of the charge neutrality condition, it follows from
the physical origin ofa rand , which will be discussed in the
next two sections. For an fcc Al50Li 50 alloy at S52.954 a.u.
we find from the LSGF calculationsa rand50.60716.

Of course, the coincidence of (^qi&,^Vi&) is a necessary
but not sufficient condition for the equivalence of the iso-
morphous and polymorphous models. The two models may
be called equivalent only if the electronic structure of the

FIG. 1. The distribution of the net chargesqi and corresponding
Madelung potentialsVi in the 512-atom supercell, modeling a ran-
dom Al50Li 50 alloy, orderedL10 alloy, and in the single-site CPA-
DFT calculations obtained by varyinga.
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random alloy and its conditional averages agree. In Fig. 2 we
show that this is indeed the case: The local densities of states
~DOS! for the Al and Li atoms in Al50Li 50 calculated by the
SS-DFT-CPA method coincide with the corresponding con-
ditional average state densities obtained in the SS-LSGF cal-
culations for the 512-atom supercell. For comparison we also
show the DOS obtained witha50 corresponding to the
‘‘conventional’’ CPA. Although the latter differs from the
correct state density, it is obvious that neglecting the electro-
static shift~7! has only a minor effect on the DOS.

The reason why the average state densities coincide is the
following: In the SS-LSGF method the difference between
the atoms of the same type comes only through the corre-
sponding Madelung shift. A shift in potential leads to a
change in the charge transfer through askewingof the local
DOS as seen in Fig. 3. Therefore, when the conditionally
averaged DOS is obtained, the skewing contributions from
the individual atomic sites caused byVi will cancel and leave
only the DOS given by the average^Vi&. Of course, this is
true only in the SS-LSGF method (LIZ51). In fact, the local
environment effects in concentrated random alloys may in-
fluence quite strongly the electronic structure of the central
site of the LIZ.

To investigate how theqV relation depends on the system
we show in Fig. 4qV relations for five different systems
including a Cu impurity in Pt (S53 a.u.! and four random
alloys: fcc Cu50Pt50 (S53 a.u.!, fcc Al50Li 50 (S52.954 a.u.!,
bcc Cu50Zn50 (S52.7 a.u.!, and ternary fcc Cu50Ni25Zn50
(S52.65 a.u.!. In the plot all charges have been normalized
by q0i obtained in the no response limit, i.e.,a50 or Vi
50, and all Madelung shifts have been normalized byq0i /S.
To partly simplify the plot we have useduq0i u in the normal-
izations, thereby separating theqV relations into two lines
rather than one.

The results presented in Fig. 4 show the existence of a

universalqV relation. Or in other words, the linear-response
function x which gives the change in the net charge relative
to q0i caused byVi , i.e., qi2q0i51/e2xViS, is a universal
constant in metallic alloys in the ASA. From the results pre-
sented in the figure we find thatx'20.63. This unavoidably
leads to the existence of a single, uniquea rand as witnessed
by the coincidence of all thêqV& points in Fig. 4. Strictly
speaking, the slopes of theqV lines are not exactly identical
and, in fact, a rand varies from 0.6 in Cu50Zn50 and
Cu50Ni25Zn50 to 0.615 in LiMg alloys, not included in the
figure. However, for most practical purposes the choice
a rand50.607 provides a sufficiently accurate description of
the electronic structure of random alloys in the SS-DFT-CPA
method in the ASA for the electrostatic part.

IV. SCREENING CHARGE IN METALLIC ALLOYS

In the previous section we have, in effect, defined a pro-
cedure whereby SS-DFT-CPA calculations may provide a
rigorous solution to the electrostatic problem in random al-
loys. The only requirements are that the Madelung shift~7! is
included and that the constanta rand is obtained from Eq.~8!
with the average Madelung potential and net charges of the
alloy components determined in supercell calculations by the
SS-LSGF method. In the derivation of the procedure we
have used some general arguments which do not clarify the
physical origin of the universal value ofa rand . However, it

FIG. 2. The local density of states in the Al50Li 50 obtained by
the LSGF method with LIZ51 and by the single-site CPA-DFT
with different values ofa rand .

FIG. 3. The site- andl-projected density of states for Al atoms in
Al50Li 50 having different Madeulng potentials due to different num-
bers of nearest-neighbor Li atoms.
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is clear that Eq.~7! accounts for the missing charge2qi in
the single-site Poisson equation for thei th atomic sphere.
Thusa rand must be connected to the screening.

The linear character of theqV relation indicates that the
screening in the impurity case as well as in the case of a
random alloy may be very well described by linear-response
theory. Owing to enhanced electron scattering at opposite
regions of the Fermi-surface linear response predicts in the
case of a free-electron gas the existence of long-range Frie-
del oscillations, which, however, decrease relatively fast
(;r 23) with the distance. In a random alloy, on the other
hand, the screening is much more efficient due to the finite
lifetime of the Bloch states for the underlying crystal lattice
and the spatial distribution of the screening density decays
exponentially. In this respect the charge correlated~cc!
model10,31 adopted by Johnson and Pinski12 in the cc- and
screened-CPA method or the equivalent screened impurity
model11,23,24may be viewed as the first approximations to a
description of the screening.

Based on the fact that a single impurity in a metallic host
is a particular case of a dilute random alloy, one would ex-
pect, and the results for a single Cu impurity in Pt presented
in the previous section unambiguously indicate this, that the
screening effects in the two cases are similar. It is therefore
surprising that Faulkneret al.35 and Ujfalussyet al.22 claim
that the screening in a random alloy isqualitativelydifferent
from that found in a single impurity system. In fact, these

authors found extremely long-range correlations between the
Madelung potential at some particular site and the net
charges at the other sites. Since the Madelung shift on a site
is proportional to the net charge on the site, this may happen
only if there are extremely long-ranged correlations between
net charges or, in other words, there is no screening. How-
ever, these results were obtained on the basis of summations
of the direct orbare Coulomb interactions which is, at best,
an ill-defined procedure, even mathematically.

To clarify the issue of screening we will perform the fol-
lowing computer experiment which will allow us to establish
the range of the net-charge correlations or the screening in
random alloys for one particular site. We set up a 512-atom
supercell which represents an fcc Cu50Pt50 random alloy~all
SRO parameters are equal to zero up to the sixth coordina-
tion shell and;0 for at least the next ten coordination shells!
and perform self-consistent SS-LSGF~LIZ51! and EC-
LSGF ~LIZ53! calculations. We then substitute one Pt atom
with one Cu atom in some site which, in general, may be
chosen arbitrarily. However, to keep the atomic distribution
as close as possible to the random distribution we chose a
site the local environment of which corresponds to the ran-
dom alloy~having equal number of Cu and Pt atoms! for the
first three coordination shells. We then repeat the self-
consistent LSGF calculations for the supercell with the sub-
stituted atom and find new values for the net charges in the
supercell. It is clear that, when LIZ51, the difference be-
tween the net charges in the two calculations,Dqi , gives the
charges induced by the change of the net charge at the sub-
stitution site ~in the case of LIZ53 the local environment
effects also effect the charge transfer!. This charge is simply
the screening charge.

In the upper panel of Fig. 5 we have plotted the normal-
ized, induced charges,

Qi5
Dqi

Dq0
, ~9!

at the first eight coordination shells around the substitution
site i 50 for Cu-Pt substitution in a Cu50Pt50 random alloy
and for Cu-Pt substitution in pure Pt (S53 a.u.! obtained in
the single-site approximation for the electronic structure
~LIZ51! as well as with local environment effects included
~LIZ53!. One may see that, while the local environment in a
pure metal hardly affects the distribution of the net charges,
it does introduce a dispersion in the distribution of the net
charges in the random alloy, which is quite substantial at the
first coordination shell but which practically disappears be-
yond the fifth coordination shell where, in fact, all the in-
duced charges almost vanish.

To demonstrate that the net charge of the Cu ‘‘impurity’’
indeed becomes screened we show in the lower panel of Fig.
5 the total normalized induced charge in thei th shell,

Qtot
i 5(

j 50

i

zjQj , ~10!

where zj is the coordination number of thej th shell. It is
seen thatQi vanishes beyond the seventh coordination shell

FIG. 4. qV relation scaled byq0i , and the Wigner-Seits
radiusS.
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in all cases, and we conclude that the screening in a random
alloy in the single-site approximation is practically the same
as the screening in the case of a single impurity in a pure
metal. There are neither qualitative nor quantitative differ-
ences between the impurity and the alloy cases.

In the upper panel of Fig. 6 we show the distribution of
the screening charge~not to be confused with the screening
density: the screening charge is, in fact, the screening density
integrated in the corresponding atomic sphere! for a Cu im-
purity in fcc, bcc, and bct Pt plotted as a function of the
distance from the impurity site in units of the Wigner-Seits
radiusS. It is clear that the screening charge follows a single,
common curve which does not depend on the structure. In
fact, by changing thec/a ratio in the bct structure one may
completely fill the remaining gaps in the calculated curve. In
the lower panel of the figure we have collected the results for
the distribution of the screening charges in seven different
systems including such hosts as Pt, Al, Cu, V, Na, and K. It
appears that the screening in metallic alloys depends neither
on the crystal structure nor on the nature of the alloy com-
ponents, at least, when described within the ASA.

The universal picture of the screening in alloy systems
found above is partly destroyed when the electrostatics is
treated more correctly, for instance by including multipole
moment contributions to the one electron Madelung potential
and energy. However, the ASA still gives a qualitatively cor-
rect picture and catches the main physics behind the phe-

nomenon. Hence it is worthwhile to discuss the origin of
such a universality in both the screening and the response
function.

First of all, it was understood a long time ago that the net
charges in the atomic spheres of the alloy components have
very little in common with the charger transfer in terms of
the redistribution of the electron charge between the alloy
components~see, for instance Ref. 38!. Even in the case of
the so-called ionic solids the self-consistent charge distribu-
tion is very close to that obtained from a linear superposition
of the free-atom electron-densities39 and this is the reason for
the success of the charge-correlated model,10 in which the
net charge is proportional to the number of nearest neighbors
of the opposite type~see also Ref. 31!.

What we are seeing is basically a size effect: The net
charges originate from the redistribution of the electron den-
sity in theinterstitial region between the atomic spheres. The
electron density in metals and their alloys in this region is
very smooth and may be well described by a free-electron
model, even for transition-metal alloys. The interstitial den-
sity is much easier to perturb than the density closer to the
atomic nuclei and it participates in the screening. On this
basis one may, in fact, develop a model based on linear-
response theory which leads to a semianalytical description
of the universal screening. However, this is beyond the scope
of the present paper.

FIG. 5. The distribution of the screening charge in the random
Cu50Pt50 alloy and in Pt due to substitution of a Cu atom.

FIG. 6. The distribution of the screening charge in different
metals having different crystal structure and lattice parameter.
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The calculated distribution of the screening net charge
may be used to obtain the screening contribution to the one-
electron potential in the single-site model for the Poisson
equation given by Eq.~7! with a equal to

ascr5
S

e2 (
i

zi

Qi

Ri
, ~11!

where Ri is the radius of thei th shell with coordination
numberzi . Using the results for the screening chargeQi in
the case of Cu-Pt substitution for one particular site~not on
average! in the Cu50Pt50 random alloy we find from Eq.~11!
after summation up to the eighth coordination shell that
ascr50.605 72. At the same time, the average values of the
net charges and the Madelung potentials,^q& and ^V&, in
conjunction with Eq.~8! gives a rand50.605 30. That is,
a rand5ascr . Since there is only one effective medium in the
supercell SS-LSGF calculations, it is obvious that the screen-
ing is the same for all the sites and thus should not depend on
the alloy component, that is, the ratiôVi&/^qi& does not
depend on the alloy components.

The important point here is the fact that, sinceascr is
given by the electrostatic interactions of the net charge inside
a sphere with its own screening~or missing! charge, it has an
on-siteor intrasite nature. Such an intrasite screening inter-
action depends almost entirely on the type of the system or
effective medium and very little on the structure. In contrast,
the parameteraL10

~see the previous section! which allows
one to perform SS-DFT-CPA calculationsidentical to those
of the SS-LSGF for theL10 structure depends solely on the
geometry of theL10 structure.

That is, there is no connection between the Madelung
constant for an ordered structure andascr : The former de-
scribes thebare electrostatic interactions between the net
charges on different sites, while the latter arises due to the
screening in the system and describes the real response of the
electronic subsystem to the perturbation, which ‘‘dresses’’
the intersite Coulomb interactions making them short range.
The reason why it is possible to obtainascr from supercell
calculations for the completely ordered structures is the fact
that at the large distances, where the atomic-distribution cor-
relation functions are not zero anymore due to the transla-
tional symmetry of the supercell, the real net charges have
become screened or uncorrelated. We will return to this point
in the next section, but here we would like to comment on
the use of the single-site approximation in the Green’s func-
tion calculations.

Our LSGF calculations of impurities in different metals
indicate that the problems observed in the single-site Green’s
function impurity calculations by Stefanou17 and Drittler
et al.40 do not originate from the single-site approximation
for the Dyson equation, but from Poisson’s equation, which
these authors also solve in the single-site approximation. The
use of the screening electrostatic shift for the one-electron
potential allows one to solve the impurity problem in the
single-site Green’s function formalism in the ASA or in the
muffin-tin ~MT! approximation almost exactly. This is so
because the impurity case corresponds to the dilute limit of a
random alloy where the concentration of one of the alloy

components approaches zero. In this case, the contribution to
the electronic structure due to the local environment effects
becomes negligible, and the electronic structure of the impu-
rity obtained by the single-site or the cluster Dyson equations
become almost identical. Such an effect may be seen, for
instance, in Fig. 5: The dispersion of the screening net charge
found in the concentrated alloy case, i.e., Cu50Pt50 ~LIZ53!,
vanishes in the case of a Cu impurity in Pt. The effect is, in
fact, the origin of the increasing accuracy of the CPA with
decreasing concentration of one of the alloy components.

V. FORMALISM FOR THE SCREENED COULOMB
INTERACTIONS

A. Madelung energy of a random alloy in the single-site
mean-field approximation „effective-medium approach…

The existence of on-site or intrasite interactions of the
kind discussed in connection with Eq.~11! must lead to a
modified description of the electrostatics of random alloys in
the single-site mean-field approximation, where all theA and
all the B atoms are represented only by the appropriate con-
ditional averages. It has been shown by Krasko41 that in a
system with randomly distributedA andB ions of chargeZA
andZB , respectively, embedded in a medium of compensat-
ing charges, the electrostatic energy is

EMad
rand2ss5

e2

2

aM

S
Z̃2, ~12!

whereaM is the Madelung constant of the underlying lattice,
S the radius of the Wigner-Seitz sphere, andZ̃ the average
charge equal tocZA1(12c)ZB .

It is obvious that Eq.~12! is valid also in the CPA-DFT if
one substitutes the ion chargesZi by the net chargesqi of the
atomic spheres. In the ASA the average chargecqA1(1
2c)qB is zero, and in this particular approximation the
Madelung energy vanishes. Note, however, that it vanishes
neither in inhomogeneous systems24,32 nor in the MT
approximation.9

We will now reformulate the above description by includ-
ing the on-site screened Coulomb interactions. However, in-
stead of simply adding the appropriate on-site term to Eq.
~12!, we will use concentration wave theory to clarify the
effective-medium approach to the Madelung energy in or-
dered alloys. Assuming that only on-site and pairwise inter-
actions are important the Hamiltonian of a binaryAcB12c
alloy may be written as

H5(
R

@e0
AcR1e0

B~12cR!#

1
1

2 (
RÞR8

@vRR8
AA cRcR81vRR8

AB
~12cR!cR8

1vRR8
AB cR~12cR8!1vRR8

BB
~12cR!~12cR8!#, ~13!

wheree0
X are on-site or intrasite interactions, which we will

assume depend only on the type of atom on siteR, vRR8
XY are

pair potentials acting betweenX and Y atoms at siteR and
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R8, respectively, andcR is the site-occupation operator tak-
ing on the value 1 if there is anA atom on siteR and 0
otherwise. UsingdcR , defined bycR5c1dcR , we may re-
write the Hamiltonian in the equivalent form

H5
1

2 (
R,R8

VRR8dcRdcR8

1
1

2 (
RÞR8

@c2vRR8
AB

12c~12c!vRR8
AB

1~12c!2vRR8
BB

#,

~14!

where the first term includes the intrasite interaction (R
5R8),

VR5052S 1

~12c!
e0

A1
1

c
e0

BD ~15!

as well as the intersite interactions (RÞR8),

VRR85vRR8
AA

1vRR8
BB

22vRR8
AB . ~16!

Upon Fourier transformation of the first term we find

H5
N

2VBZ
E

BZ
dq V~q!cqcq*

1
1

2 (
RÞR8

@c2vRR8
AB

12c~12c!vRR8
AB

1~12c!2vRR8
BB

#,

~17!

where the second term is the average contribution to the
energy due to pair interactions which in the case of direct
Coulomb ion-ion interactions isqxqy /uR2R8u combined
with the corresponding contribution from the interaction be-
tween the ions and the homogeneous compensating charge.
The second term is exactly Eq.~12!.

The first term in Eq.~17! is usually associated with the
configurational contribution to the energy of the system, but
this is correct only if the contribution from intrasite interac-
tions is zero. It is easily evaluated in a completely random
alloy, where all the occupation numbers are uncorrelated and
thereforecqcq* 5c(12c)/N, i.e., normalized to give the or-
dering energy per atom. One finds

E
BZ

dq V~q!cqcq* 5c~12c!E
BZ

dq V~q!

5VBZc~12c!VR50 , ~18!

which according to Eq.~13! is equal toce0
A1(12c)e0

B .
It now remains to define the on-site interaction terme0

i ,
which results from the interaction of the net chargeqi in the
alloy with the corresponding screening charge, in such a way
that e0

i and the corresponding on-site Coulomb potentialVi

given by Eq. ~7! are consistent within DFT, i.e.,Vi

5de0
i /dqi :

e0
i 52

e2

2

ascr

S
qi

2 . ~19!

Using this definition the first term in the Hamiltonian~17!
may be written

EMad
rand2ss5EMad

scr2ss52
e2

2

ascr

S
@cqA

21~12c!qB
2 #

52
e2

2
c~12c!

ascr

S
~qA2qB!2

[c~12c!Vscr~R50!. ~20!

This is the result obtained by Magriet al.10 more than a
decade ago in the so-called charge-correlated model and later
by Korzhavyiet al.15,11 and by Johnson and Pinski12 in their
‘‘screened’’ models for the single-site CPA-DFT. The differ-
ence between these models lies only in the way the param-
eterascr is determined~from 0.439 721 2 for bcc in Ref. 12
to 0.542 820 38 for fcc in Ref. 20!. A discussion of the issues
involved may be found in Refs. 12, 20, 23, 24 and 31.

In the supercell aproach, of course, only intersite Cou-
lomb interactions of the net charges contribute to the Made-
lung energy. The existence of a nonzero Madelung energy in
that case is a consequence of the dispersion in the net
charges of theA and B components due to different local
environment at every site. The difference in the net charges
is the result of the fact that the screening charge density goes
beond the atomic spheres of the alloy components and there-
fore sites with different local environments will have a dif-
ferent amount of screening charge. To include the dispersion
of charges which exist in the supercell model, one must re-
formulate the single-site effective-medium model by adding
the corresponding on-site screening contribution to the usual
intersite part of the Hamiltonian.

B. Configurational part of the Madelung energy and potential
in the effective-medium approach

The reason why we reformulated the Hamiltonian in
terms of concentration waves is to show how to define cor-
rectly the configurational part of the energy, and in particular
the Madelung energy in the presence of on-site interactions.
This is an important issue since in some formalisms, such as
pseudopotential theory or theS(2) formalism,42–44 V(q) is
already given a particular form and this may lead to prob-
lems with the correct definition of the configurational part of
the total energy. The point is that the intrasite interactionsdo
not contribute to theconfigurationalpart of the total energy
which in real space may be written as~here, we do not con-
sider the contribution from multisite interactions!45

Hcon f5
1

2 (
RÞR8

VRR8dcRdcR8 . ~21!

Therefore if the configurational Hamiltonian is written in
terms ofV(q), e.g., in the concentration wave formalism, it
must be corrected by the subtraction of the corresponding
intrasite interaction, i.e.,

Hcon f5
1

2VBZ
E

BZ
dq V~q!cqcq* 2

1

2
c~12c!VR50

5
1

2VBZ
E

BZ
dq@V~q!2VR50#cqcq* , ~22!
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where we have used the sum rule for the concentration wave
densitycqcq* : *BZdq V(q)cqcq* 5VBZc(12c).

The subtraction of the intrasite term in Eq.~22! is crucial
for obtaining the correct ordering energy in pseudopotential
theory and in theS(2) formalism42–44 as well as for making
the theory consistent. Let us, for instance, consider the
Madelung energy of a binary, completely ordered alloy with
two nonequivalent sublattices. It is easy to show that its
Madelung energy may be presented in a form similar to that
of the Madelung energy of the random alloy. For instance,
the Madelung energy of theL10 ordered phase is

EMad
L10 52

e2

2

aL10

S
c~12c!~qA2qB!21

e2

2

a f cc

S
q̃2,

~23!

where the last term is zero in the ASA sinceq̃50 as in the
random alloy case, but nowaL10

is a constant which appears
due to the intersite Coulomb interactions. In the appendix of
Ref. 37 it is shown that, in fact,aL10

(qA2qB)2/S is the
Fourier transform of the effective direct electrostatic interac-
tion at the corresponding superstructure vectorkL10

52p/a(100), i.e.,Ves(kL10
)5aL10

(qA2qB)2/S.

On the other hand,EMad
L10 may also be found as the sum of

the electrostatic energy of the completely random alloy,
EMad

rand2ss, given by Eq.~20! and the ordering energy,DU:
EMad

L10 5EMad
rand2ss1DU. Since the Madelung energy of the or-

deredL10 alloy, EMad
L10 is uniquely defined in terms of the

corresponding Madelung constant, which has nothing to do
with the screening in the alloy, it is obvious that a screening
term must be present in the ordering energyDU to compen-
sate for the screening contribution toEMad

rand2ss.
Indeed, as shown in the appendix of Ref. 45 the ordering

energy in theL10 structure may be written in the form

DUMad5
1

8
h2@Ves~kL10

!2Vscr~R50!#, ~24!

from which it is easy to see that in the completely ordered
state, where the long-range order parameterh51, the last
term in Eq.~24! is exactly the Madelung energy of a random
alloy at the stoichiometric composition@c(12c)51/4#, and
thusEMad

rand2ss1DU51/8aL10
(qA2qB)2/S.

This illustrates an important point: The ordering energy
represented in reciprocal space in the concentration wave
formalism must be corrected by the subtraction of the intra-
site term, otherwise the theory will not be consistent. Equa-
tion ~22! gives the correct definition of the ordering energy
considered more thoroughly in the appendix of Ref. 45. The
intrasite interaction must also be subtracted when one con-
siders the energy of short-range order~SRO! effects, and
thus the correct Krivoglaz-Clapp-Moss expression must have
V(q)2VR50 instead ofV(q), which is exactly the case in
Krivoglaz’s derivation.46 Note, however, that this problem
does not exist if the Krivoglaz-Clapp-Moss expression is
used together with the so-called Onsager correction43 pro-
vided that it is properly defined.

C. Effective-medium approach to the Madelung potential
and energy of a random alloy resented by a supercell

The reason that it was possible to calculateascr on the
basis of theorderedstructures is the fact that in an ordered
binary alloy with onlytwo nonequivalent sublattices one has
an exact cancellation of the screening contribution to the
Madelung energy and potential. This does not happen, how-
ever, in the general case of a supercell withn.2 nonequiva-
lent sublattices. Forn52, the Madelung energy in the
effective-medium approach may be written as the sum of the
contribution from the intrasite screening interactions,

EMad
scr2sc5

e2

2N

ascr

S (
i

qi
2

5
e2

2

ascr

S S c
1

NA
(
i 5A

qiA
2 1~12c!

1

NB
(
i 5B

qiB
2 D

3S Þ
e2

2

ascr

S
@c^qA&21~12c!^qB&2# D , ~25!

whereNA andNB are the number ofA andB atoms, respec-
tively, and the ordering energy due to the intersite interac-
tions

DUMad5
e2

2S (
i

g i~aki
2ascr!Dqki

2 . ~26!

Here,g i is a normalizing coefficient,aki
a constant due to

thebareelectrostatic interactions between the net charges for
the superstructure vectorki which may be calculated from
the Madelung constantsaM

i j of the corresponding supercell
similar to theaL10

considered above, andDqki
the difference

between the charges in the crests and in the troughs of the
concentration wave in the supercell. In the case of a binary
alloy with two nonequivalent sublattices, there is only oneki
andDqki

5(qA2qB).

If aki
depends only on the structure and describes thebare

electrostatic interaction between net charges, thenDqki

‘‘dresses’’ these interactions according to the real charge dis-
tribution in the alloy~an equivalent description in real space
in the charge correlated model is given by Wolverton and
Zunger,47 who also show that the Madelung energy of the
random alloy has intrasite character!. If the net charges in the
supercell are screened~or uncorrelated! at distances less than
half the period of the concentration wave with wave vectorki
thenDqki

50 due to the destruction interference and the cor-
responding contribution to the ordering energy vanishes. If
the supercell includes only long-range concentration waves,
the corresponding ordering contribution to the Madelung po-
tential and energy becomes zero.

Let us finally mention the fact that the Madelung energy
of a random alloy obtained in supercell calculations~25! is
not equal to the Madelung energy in the single-site calcula-
tions, and thus it cannot be used to obtainascr . The reason is
simply that the Madelung energy is not a self-averaging
quantity. However, the Madelung potential is, and it is clear
that
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^VX&sc5
e2

NX

ascr

S (
i 5x

qiX5e2
ascr

S
^qX&5VX

ss, ~27!

which allows one to use Eq.~8! to obtainascr in the super-
cell calculations and shows whya rand is exactly equal to
ascr .

D. Intersite screened Coulomb interactions

Although the screened Coulomb interactions have an in-
trasite character, they may contribute to the effectivepair
intersite interactions of the kind obtained in the generalized
perturbation method~GPM!,19,48 because the screening
charge is located on several of the coordination shells around
each atom. This was, in fact, already recognized by
Ducastelle19 who derived the contribution to the GPM poten-
tials from the screened Coulomb interactions in the frame-
work of the Hartree-Fock tight-binding CPA theory.

The existence of an additional electrostatic term due to
the screening is also consistent with Andersen’s force
theorem,49 which states that the change in the total energy of
a system due to some perturbation to first order is given by
the change in the sum of the one-electron energies obtained
from frozen one-electron potentials plus the change of the
electrostatic energy due to the perturbation. In fact, this latter
contribution from the screened Coulomb interaction has been
completely neglected in a number of first-principles calcula-
tions of GPM interactions.50–53Here we will therefore show
how the screening contribution to the GPM potentials may
be defined and obtained on the basis of the calculated spatial
distribution of the screening charge.

GPM-like pair interactions, usually defined by Eq.~16!
for a specific lattice vectorR, may be determined as the
site-projected part of the change in the total energy when two
atoms of different types in a completely random alloy are
exchanged between sites infinitely far apart in such a way
that their neighbors at the relative positionR are of the op-
posite type after the exchange. This is schematically illus-
trated in Fig. 7. That part of the total energy which should be
accounted for is half the site-decomposed total energy writ-
ten in terms of the intersite interactions or interatomic poten-
tials, i.e.,

V(2)~R!5
1

2
@E1

(2)~R!2E2
(2)~R!#. ~28!

Here,E1
(1) is the total energy due to pairwise interactions of

the unperturbed system projected onto site 0 andE2
(2) is the

same quantity after the exchange. A similar expression is
also valid in the case of multisite interactions, but this will
involve a more complex exchange of atoms and will not be
considered here because the screened Coulomb interactions
do not contribute to the effective multisite interactions in the
ASA.

Within multiple-scattering theory as well as in the tight-
binding approximation a Green’s-function formulation al-
lows both site and ‘‘path’’ decomposition of the electron den-
sity and thereby makes it possible to write down an
analytical expression for the one-electron contribution to the
n-site interactions,V(n)(R), in the CPA.19,48 Concerning the
screened Coulomb interactions one must, however, proceed
differently. There are several ways to do so, but here we will
present a straightforward approach.

In the sense of the CPA and single-site mean-field theory
we will use an effective-medium approach, assuming that at
all sites, i.e., within the atomic spheres assigned to each site,
there is an electroneutral effective medium except at the two
sites0 andR under consideration. In those two sites we must
use the actual values of the net charges of the alloy compo-
nents, which in the effective-medium approach are the aver-
age net chargesqA andqB of the alloy components.

In the first-principles methods, however, these net charges
depend on the specific choice of the size of the atomic
spheres and thus they must, in principle, go together with the
corresponding screening cloud. Since we calculate the
change in the electrostatic energy of the two systems shown
in Fig. 7 projected onto site0 due to the exchange ofA and
B atoms in positionsR, we must include only the interaction
of the net charge at site0 with the net charge at siteR andits
screeningcharge. That is, the interaction of the net charge
with its own screening charge must be excluded as it is in-
cluded in the definition of the screened on-site interactions;
see Eq.~11!. Thus the first term in Eq.~28! for the system
before the exchange of atoms has been made,E1

scr(R), is

E1
scr~R!5e2qA (

R8Þ0

qAR8

R8
1e2qB (

R8Þ0

qBR8

R8
. ~29!

Here,qiR8 is either the net charge of thei th componentqi if
R85R or the corresponding screening charge ifR8ÞR. A
similar expression may be written forE2

scr(R), after the ex-
change of theA andB atoms in theR sites, i.e.,

E2
scr~R!5e2qA (

R8Þ0

qBR8

R8
1e2qB (

R8Þ0

qAR8

R8
. ~30!

The resulting expression for the screened Coulomb interac-
tions which should be added to the usual one-electron term is
therefore

Vscr~R!5
e2

2 S qA (
R8Þ0

qAR82qBR8

R8
2qB (

R8Þ0

qBR82qAR8

R8
D

5
e2

2
~qA2qB!2 (

R8Þ0

Q~ uR82Ru!

R8
, ~31!

FIG. 7. Two systems, whose 0-site projected Coulomb energy is
to be used in the calculation of the screened effective interactions at
distanceR.
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whereQ(R) is the normalized screening charge defined in
Eq. ~9!, and where we have used the condition that the
screening does not depend on the type of the atom. Finally,
performing the summation in Eq.~31! one may define the
screened Coulomb interactions as

Vscr~R!5
e2

2
~qA2qB!2

ascr~R!

S
. ~32!

It is easy to see from Eqs.~31! and ~11! that ascr(R50)
5ascr5a rand and thereforeVscr(R50) is exactly the on-
site screened interactions that defines the Madelung energy
of the binary alloy which has exactly the same form~20!.
This on-site interaction must be included in the definition of
the S(2) interactions,42 as has been demonstrated in the pre-
vious section~see also Ref. 44!. When RÞ0, Vscr(R) de-
fines the intersite screened Coulomb interaction contribution
to the GPM-like effective interactions. Since the screening in
the ASA is practically universal these interactions have the
universal form presented in Fig. 8.

VI. TOTAL ENERGY IN THE SINGLE-SITE CPA
AND THE SUPERCELL LSGF METHODS

The fact that the Madelung energy of a random alloy de-
scribed either by the effective-medium model defined by the
SS-DFT-CPA method or by the supercell model in conjunc-
tion with the SS-LSGF method differ from each other has
neither consequences for the final result for the total energy
of the random alloy nor even for the partial and local contri-
butions to the total energy. This follows simply from the fact
that the density of states and its average local contributions
are the same in the two methods, as shown above.

In Table I we compare the total energy and its components
in a Cu50Pt50 random alloy calculated by the SS-DFT-CPA
method withascr50.605 72 and by the SS-LSGF method on
the basis of a 512-atom supercell, in which the atomic posi-
tions of Cu and Pt have been chosen such that the SRO
parameters are equal to zero at the first seven coordination

FIG. 8. The intersite screened Coulomb effective interactions
obtained from the normalized screening charge presented in Fig. 6.

TABLE I. The total energy,~in Ry! of Cu50Pt50 random alloy and corresponding contributions obtained in
three different calculations: by the single-site CPA-DFT method,~ss-CPA-DFT!, in the 512-atom supercell
LSGF calculations with optimized atomic distribution, providing zero SRO parameters up to the seventh
coordination shell,~LSGF-1!, and with atomic configuration immediately after random number generator,
~LSGF-2!., (Ecoul5Eel2nuc1Eel2el1EMad).

Site Energy ss-CPA-DFT LSGF-1 LSGF-2

Cu
Kinetic 3360.076110 3360.076294 3360.077674

^Eel2nuc& 27974.160832 27974.157257 27974.178557
^Eel2el& 1439.080777 1439.078359 1439.099272
^EMad& 20.004193 20.005646 20.005994
^ECoul& 26535.084248 26535.084544 26535.085279
^Exc& 2130.026085 2130.026000 2130.026621
^ECu& 23305.034222 23305.034250 23305.034226

Pt
Kinetic 42188.794140 42188.794273 42188.791806

^Eel2nuc& 292747.101049 292747.093691 292747.030284
^Eel2el& 14378.917863 14378.911671 14378.849707
^EMad& 20.004193 20.005533 20.005472
^ECoul& 278368.187379 278368.187553 278368.186049
^Exc& 2693.866856 2693.866786 2693.865919
^EPt& 236873.260095 236873.260068 236873.260162

Alloy Etot 220089.147159 220089.147159 220089.147194
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shells ~LSGF-1!. The agreement between the two calcula-
tions is seen to be excellent if one combines the electron-
nucleus, the electron-electron, and the Madelung contribu-
tions to form a total Coulomb energy,Ecoul5Eel2nuc
1Eel2el1EMad .

The accuracy of the SS-DFT-CPA method with the appro-
priate screening contribution to the Madelung potential and
energy may be appreciated if one compares the results of a
512-atom supercell calculation performed by the SS-LSGF
method~LSGF-2! where the distribution of the Cu and Pt
atoms have not been optimized after the application of the
random number generator leading to quite small, but not
zero, SRO parameters. The values of the SRO parameters for
the first seven coordination shells are20.005 208 ~1!,
0.026 041~2!, 0.007 161~3!, 20.014 323~4!, 20.021 484
~5!, 0.039 062 5~6!, 20.013 671 8~7!, respectively, which are
approximately the same, as in the LSMS calculations in Ref.
54. The agreement between SS-DFT-CPA results and SS-
LSGF calculations with a properly chosen supercell
~LSGF-1! is obviously better than between two SS-LSGF
calculations.

VII. CONCLUSION

The screened Coulomb interactions which are due to the
interaction between the net charge of an alloy component
and its screening charge must be included in a consistent
single-site mean-field theory of the electrostatics in random
alloys. In this paper we have shown how this may be done
and we have calculated the spatial distribution of the screen-
ing charge which in the ASA is found to be practically uni-
versal for homogeneous systems. A formalism that describes
the contribution from for the screened Coulomb interaction
to Madelung potential and energy as well as to the effective
interactions of the GPM-type is presented.
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