796 research outputs found

    Minimum requirements for feedback enhanced force sensing

    Full text link
    The problem of estimating an unknown force driving a linear oscillator is revisited. When using linear measurement, feedback is often cited as a mechanism to enhance bandwidth or sensitivity. We show that as long as the oscillator dynamics are known, there exists a real-time estimation strategy that reproduces the same measurement record as any arbitrary feedback protocol. Consequently some form of nonlinearity is required to gain any advantage beyond estimation alone. This result holds true in both quantum and classical systems, with non-stationary forces and feedback, and in the general case of non-Gaussian and correlated noise. Recently, feedback enhanced incoherent force sensing has been demonstrated [Nat. Nano. \textbf{7}, 509 (2012)], with the enhancement attributed to a feedback induced modification of the mechanical susceptibility. As a proof-of-principle we experimentally reproduce this result through straightforward filtering.Comment: 5 pages + 2 pages of Supplementary Informatio

    Two-spin measurements in exchange interaction quantum computers

    Get PDF
    We propose and analyze a method for single shot measurement of the total spin of a two electron system in a coupled quantum dot or donor impurity structure, which can be used for readout in a quantum computer. The spin can be inferred by observing spin-dependent fluctuations of charge between the two sites, via a nearby electrometer. Realistic experimental parameters indicate that the fidelity of the measurement can be larger than 0.999 with existing or near-future technology. We also describe how our scheme can be used to implement various one- and two-qubit measurements, and hence to implement universal quantum computation

    Pulse-induced acoustoelectric vibrations in surface-gated GaAs-based quantum devices

    Full text link
    We present the results of a numerical investigation which show the excitation of acoustoelectric modes of vibration in GaAs-based heterostructures due to sharp nano-second electric-field pulses applied across surface gates. In particular, we show that the pulses applied in quantum information processing applications are capable of exciting acoustoelectric modes of vibration including surface acoustic modes which propagate for distances greater than conventional device dimensions. We show that the pulse-induced acoustoelectric vibrations are capable of inducing significant undesired perturbations to the evolution of quantum systems.Comment: To be published in Phys. Rev.

    Statistical evaporation of rotating clusters. IV. Alignment effects in the dissociation of nonspherical clusters

    Full text link
    Unimolecular evaporation in rotating, non-spherical atomic clusters is investigated using Phase Space Theory in its orbiting transition state version. The distributions of the total kinetic energy release epsilon_tr and the rotational angular momentum J_r are calculated for oblate top and prolate top main products with an arbitrary degree of deformation. The orientation of the angular momentum of the product cluster with respect to the cluster symmetry axis has also been obtained. This statistical approach is tested in the case of the small 8-atom Lennard-Jones cluster, for which comparison with extensive molecular dynamics simulations is presented. The role of the cluster shape has been systematically studied for larger, model clusters in the harmonic approximation for the vibrational densities of states. We find that the type of deformation (prolate vs. oblate) plays little role on the distributions and averages of epsilon_tr and J_r except at low initial angular momentum. However, alignment effects between the product angular momentum and the symmetry axis are found to be significant, and maximum at some degree of oblateness. The effects of deformation on the rotational cooling and heating effects are also illustrated.Comment: 15 pages, 9 figure

    Wavefront Curvature in Optical Atomic Beam Clocks

    Full text link
    Atomic clocks provide a reproducible basis for our understanding of time and frequency. Recent demonstrations of compact optical clocks, employing thermal atomic beams, have achieved short-term fractional frequency instabilities in the 10−1610^{-16}, competitive with the best international frequency standards available. However, a serious challenge inherent in compact clocks is the necessarily smaller optical beams, which results in rapid variation in interrogating wavefronts. This can cause inhomogeneous excitation of the thermal beam leading to long term drifts in the output frequency. Here we develop a model for Ramsey-Bord\'e interferometery using optical fields with curved wavefronts and simulate the 40^{40}Ca beam clock experiment described in [Olson et al., Phys. Rev. Lett. 123, 073202 (2019)]. Olson et al.'s results had shown surprising and unexplained behaviour in the response of the atoms in the interrogation. Our model predicts signals consistent with experimental data and can account for the significant sensitivity to laser geometry that was reported. We find the signal-to-noise ratio is maximised when the laser is uncollimated at the interrogation zones to minimise inhomogeneity, and also identify an optimal waist size determined by both laser inhomogeneity and the velocity distribution of the atomic beam. We investigate the shifts and stability of the clock frequency, showing that the Gouy phase is the primary source of frequency variations arising from laser geometry.Comment: 13 pages, 7 figure

    Riparian vegetation restoration: Does social perception reflect ecological value?

    Get PDF
    Special Issue PaperSocial‐ecological contexts are key to the success of ecological restoration projects. The ecological quality of restoration efforts, however, may not be fully evident to stakeholders, particularly if the desired aesthetic experience is not delivered. Aesthetically pleasing landscapes are more highly appreciated and tend to be better protected than less appealing landscapes, regardless of their ecological value. Positive public perception of restoration actions may therefore facilitate stakeholder involvement and catalyse recognition of ecological improvement. Here we aim to contrast aesthetical perception and ecological condition in headwater river reaches restored through passive ecological restoration in study areas in Portugal (Alentejo) and France (Normandy). We recorded structural and functional indicators of riparian vegetation to monitor the ecological condition of study sites along a passive restoration trajectory. Aesthetical perception indicators were assessed through stakeholder inquiries developed under a semantic differential approach. We analysed perception responses to changes in the riparian ecosystems resulting from passive ecological restoration across different geographical contexts and social groups. The analysed social groups comprised stakeholders (environmental managers and landowners) and university students (landscape architecture and geography students). Results indicate that (a) visual preferences often do not reflect changes in ecological condition, (b) perception of the restoration process is strongly context dependent, and (c) experience and cultural background affect perception of ecological condition across the different social groups analysed. Clear identification of relevant stakeholder groups (those interested in or directly affected by restoration), effective communication, and stakeholder engagement are therefore essential for assuring the success of river restoration projectsinfo:eu-repo/semantics/publishedVersio

    An entangled two photon source using biexciton emission of an asymmetric quantum dot in a cavity

    Get PDF
    A semiconductor based scheme has been proposed for generating entangled photon pairs from the radiative decay of an electrically-pumped biexciton in a quantum dot. Symmetric dots produce polarisation entanglement, but experimentally-realised asymmetric dots produce photons entangled in both polarisation and frequency. In this work, we investigate the possibility of erasing the `which-path' information contained in the frequencies of the photons produced by asymmetric quantum dots to recover polarisation-entangled photons. We consider a biexciton with non-degenerate intermediate excitonic states in a leaky optical cavity with pairs of degenerate cavity modes close to the non-degenerate exciton transition frequencies. An open quantum system approach is used to compute the polarisation entanglement of the two-photon state after it escapes from the cavity, measured by the visibility of two-photon interference fringes. We explicitly relate the two-photon visibility to the degree of Bell-inequality violation, deriving a threshold at which Bell-inequality violations will be observed. Our results show that an ideal cavity will produce maximally polarisation-entangled photon pairs, and even a non-ideal cavity will produce partially entangled photon pairs capable of violating a Bell-inequality.Comment: 16 pages, 10 figures, submitted to PR

    Life history evolution, species differences and phenotypic plasticity in hemiparasitic eyebrights (Euphrasia)

    Get PDF
    Premise of the study: Species delimitation in parasitic organisms is challenging as traits used in the identification of species are often plastic and vary depending on the host. Here, we use species from a recent radiation of generalist hemiparasitic Euphrasia to investigate trait variation and trait plasticity. We test whether Euphrasia species show reliable trait differences, investigate whether these differences correspond to life history trade-offs between growth and reproduction, and quantify plasticity in response to host species. Methods: We perform common garden experiments to evaluate trait differences between eleven Euphrasia taxa grown on a common host, document phenotypic plasticity when a single Euphrasia species is grown on eight different hosts, and relate our observations to trait differences recorded in the wild. Key results: Euphrasia exhibit variation in life history strategies; some individuals transition rapidly to flower at the expense of early season growth, while others invest in vegetative growth and delay flowering. Life history differences are present between some species, though many related taxa lack clear-cut trait differences. Species differences are further blurred by phenotypic plasticity—many traits are plastic and change with host type or between environments. Conclusions: Phenotypic plasticity in response to host and environment confounds species delimitation in Euphrasia. When grown in a common garden environment it is possible to identify some morphologically distinct taxa, though others represent morphologically similar shallow segregates. Trait differences present between some species and populations demonstrates the rapid evolution of distinct life history strategies in response to local ecological conditions."Manyhosts.csv" contains morphological measurements from one Euphrasia arctica population from North Berwick, Scotland, grown with eight hosts. "Manyspecies.csv" contains morphological measurements of five Euphrasia species and six natural Euphrasia hybrids grown on a single host, Trifolium repens. "Earlylate.csv" contains repeated growth measurements at different times of year, used in correlations of height at end of season. "Wildcommon.csv" contains Euphrasia species grown in the common garden experiment and wild collected plants for trait comparisons.Data collection is detailed in the associated manuscript. Post collection data processing can be viewed at: https://github.com/Euphrasiologist/phenotypic_plasticity_euphrasi

    Multiscale photosynthetic exciton transfer

    Full text link
    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published online by Nature Physics (2012

    Absolute absorption line-shape measurements at the shot-noise limit

    Get PDF
    Here, we report a measurement scheme for determining an absorption profile with an accuracy imposed solely by photon shot noise. We demonstrate the power of this technique by measuring the absorption of cesium vapor with an uncertainty at the 2-ppm level. This extremely high signal-to-noise ratio allows us to directly observe the homogeneous line-shape component of the spectral profile, even in the presence of Doppler broadening, by measuring the spectral profile at a frequency detuning more than 200 natural linewidths from the line center. We then use this tool to discover an optically induced broadening process that is quite distinct from the well-known power broadening phenomenon
    • 

    corecore