99 research outputs found

    A FRAMEWORK FOR CONSERVING POWER IN MANETS

    Get PDF
    The idea of using controllable relay nodes for designing mobile systems has been explored by several researchers. The main objective of this paper is to design a framework for deploying relay nodes with controlled mobility to conserve power in MANET. To meet out this proposal, a heterogeneous network consisting of traditional nodes with limited energy and relay nodes with more energy resources are considered. The deployment of relay nodes are based on the following two methods: 1. Min-Total, aims to minimize the total energy consumption of all the traditional nodes in the network. 2. Min-Max, aims to minimize the energy consumed by a traditional node in the network. The solution of these two methods can be used to prioritize each individual node in the network. The trade-offs involved in deploying an increasing/decreasing fraction of relay nodes, varying node weights, varying epoch duration is analyzed. This framework aims at dynamically combining both Min-Total and Min-Max based on the characteristics and requirements of the network

    Hydrogen Bonding Interaction between 1-Propanol and Acrylic Esters in Non-polar Solvents: An FTIR Study

    Get PDF
    The association between 1-propanol and acrylic esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) in non-polar solvents, viz. n-heptane, CCl4, and benzene has been investigated by means of FTIR spectroscopy. The formation constants of the 1:1 complexes have been calculated using Nash’s method. The values of the formation constant and the Gibbs energy vary with ester chain length, which suggests that the strengths of the intermolecularOH…O=Cbonds are dependent on the alkyl group of the acrylic ester and the results show that the proton accepting ability of acrylic esters is in the order methyl methacrylate < ethyl methacrylate < butyl methacrylate. The results also show a significant dependence of the association constant upon the solvent used. The solvent effect on the hydrogen bond equilibria is discussed in terms of specific interactions between the solute and the solvent.KEYWORDS: FTIR spectroscopy, acrylic esters, hydrogen bonding, solvent effects

    Dielectric relaxation study of ethyl acrylate-alcohol mixtures using time domain reflectometry

    Full text link

    Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains

    Get PDF
    In this work biohydrogen generation and its improvement possibilities from beverage industrial wastewater were sought. Firstly, mesophilic hydrogen fermentations were conducted in batch vials by applying heat-treated (80°C, 30 min) sludge and liquid (LB-grown) cultures of Escherichia coli XL1-Blue/. Enterobacter cloacae DSM 16657 strains for bioaugmentation purposes. The results showed that there was a remarkable increase in hydrogen production capacities when facultative anaerobes were added in the form of inoculum. Furthermore, experiments were carried out in order to reveal whether the increment occurred either due to the efficient contribution of the facultative anaerobic microorganisms or the culture ingredients (in particular yeast extract and tryptone) supplied when the bacterial suspensions (LB media-based inocula) were mixed with the sludge. The outcome of these tests was that both the applied nitrogen sources and the bacteria (. E. coli) could individually enhance hydrogen formation. Nevertheless, the highest increase took place when they were used together. Finally, the optimal initial wastewater concentration was determined as 5 g/L. © 2014 The Society for Biotechnology, Japan

    Enhancement strategies for hydrogen production from wastewater: A review

    Full text link
    © 2016 Bentham Science Publishers. This mini review focuses on the current developments in the field of dark fermentation technologies using wastewater as carbon and nutrient source in batch reactors. Besides, the major microbiota (pure, enriched mixed, co and mixed cultures) involved in the process have been emphasized. Additionally, problems associated with the lower production performances and the overcoming strategies applied to enhance the production rate (HPR) and yield (HY) bybio-augmentation, immobilization, enrichment technique and nano particles (NP) addition were also discussed. This mini review provides more insights about the recent developments in the dark fermentative hydrogen production (DHFP) process and their advantages in a brief manner. The perspective towards the development of sustainable society by using bioH2 technology is enlightened

    Interaction between Dietary Vitamin D3 and Vitamin K3 in Gilthead Seabream Larvae (Sparus aurata) in Relation to Growth and Expression of Bone Development-Related Genes

    Get PDF
    Vitamins D and K are essential fat-soluble nutrients that intervene in bone development processes among other biological functions. The present study is aimed at investigating the potential combined effect of dietary supplementation with vitamin D3 (cholecalciferol) and vitamin K3 (menadione) in gilthead seabream (Sparus aurata) larvae. For that purpose, seabream diets were supplemented with different combinations of vitamin D3/vitamin K3 (mg/kg diet) as follows: 0.00/0, 0.06/70, 0.06/170, 0.13/70, 0.13/170, 0.40/70, and 0.40/170. Feeding gilthead seabream larvae (22 days post hatch) for 21 days with the diets supplemented with 0.06-0.13 mg/kg vitamin D3 and 70 mg/kg vitamin K3 (diets 0.06/70 and 0.13/70) led to the highest larval growth and survival and the highest expression of important biomarkers of both bone development and health, such as bmp2, osx, and mgp, and calcium homeostasis, such as pthrp and casr. However, the increased supplementation with both vitamins at 0.40 mg/kg vitamin D3 and 170 mg/kg vitamin K3 (diet 0.40/170) reduced larval growth and survival, downregulated bmp2 and pthrp expressions, and upregulated osx and mgp, causing an unbalance in the relative expression of these genes. The results of the present study have shown the interaction between vitamin D3 supplementation and vitamin K3 supplementation in larval performance and gene expression related to bone development and calcium homeostasis, denoting the significance of a correct balance between both vitamins in larval diets.publishedVersio

    Effects of dietary vitamin D3 levels on survival, mineralization, and skeletal development of gilthead seabream (Sparus aurata) larvae

    Get PDF
    Vitamin D is an essential fat soluble micronutrient that helps in growth, bone development, calcium homeostasis and other metabolic process. The study on effect of vitamin D3 in marine fish larvae were very scarce irrespective of species. The present study determines the impacts of dietary vitamin D3 on growth performance, calcium absorption, mineralization, and skeletal anomalies during the development of gilthead seabream (Sparus aurata) larvae was assessed until 47 days post hatching. Diets containing four levels of vitamin D3 (0, 25, 30, 384 μg kg−1 or 11.6, 1000, 1200, 15,360 IU kg−1) were formulated to determine the effect of vitamin D3 at deficient, excess, and optimum levels. The gilthead seabream larvae in the present study fed with this wide range of vitamin D3 presented a constant growth with all the diets but presented signs of toxicity in excess level, affecting the survival, calcium uptake, and bone biomarker mechanism in larvae, which resulted in increased skeletal anomalies and mortality. An increase of dietary vitamin D3 up to 384 μg kg−1 significantly raised the whole body vitamin D3 content, calcium, and phosphorus intake and increased the incidence of skeletal anomalies, particularly cranial anomalies. The appearance of skeletal anomalies in larvae fed 384 μg kg−1 vitamin D3 was in association with the upregulation of bmp2, alp, and oc gene expression. However, larvae fed 0, 25, 30 μg kg−1 vitamin D3 showed higher survival than the group fed 384 μg kg−1 vitamin D3. Meanwhile vitamin D3 deficient diet 0 μg kg−1 presented with lower mineralization rate and increase incidence of maxillary anomaly. Thus, the current study revealed the evidence of vitamin D3 deficiency as well as toxicity in gilthead seabream larvae during the developmental process and conclude that the recommended dietary vitamin D3 level for gilthead seabream larvae may range between 25 and 30 μg kg−1 which improves larval survival, calcium and phosphate level and vertebral mineralization with reduced incidence of skeletal anomalies in gilthead seabream larva
    corecore