82 research outputs found
A Framework for Imbalanced Time-Series Forecasting
Time-series forecasting plays an important role in many domains. Boosted by
the advances in Deep Learning algorithms, it has for instance been used to
predict wind power for eolic energy production, stock market fluctuations, or
motor overheating. In some of these tasks, we are interested in predicting
accurately some particular moments which often are underrepresented in the
dataset, resulting in a problem known as imbalanced regression. In the
literature, while recognized as a challenging problem, limited attention has
been devoted on how to handle the problem in a practical setting. In this
paper, we put forward a general approach to analyze time-series forecasting
problems focusing on those underrepresented moments to reduce imbalances. Our
approach has been developed based on a case study in a large industrial
company, which we use to exemplify the approach
The GNSS-R Eddy Experiment II: L-band and Optical Speculometry for Directional Sea-Roughness Retrieval from Low Altitude Aircraft
We report on the retrieval of directional sea-roughness (the full directional
mean square slope, including MSS, direction and isotropy) through inversion of
Global Navigation Satellite System Reflections (GNSS-R) and SOlar REflectance
Speculometry (SORES)data collected during an experimental flight at 1000 m. The
emphasis is on the utilization of the entire Delay-Doppler Map (for GNSS-R) or
Tilt Azimuth Map (for SORES) in order to infer these directional parameters.
Obtained estimations are analyzed and compared to Jason-1 measurements and the
ECMWF numerical weather model.Comment: Proceedings from the 2003 Workshop on Oceanography with GNSS
Reflections, Barcelona, Spain, 200
LNL irradiation facilities for radiation damage studies on electronic devices
In this paper we will review the wide range of irradiation facilities installed at the INFN Legnaro National Laboratories and routinely used for radiation damage studies on silicon detectors, electronic components and systems. The SIRAD irradiation facility, dedicated to Single Event Effect (SEE) and bulk damage studies, is installed at the 14MV Tandem XTU accelerator and can deliver ion beams from H up to Au in the energy range from 28MeV to 300 MeV. An Ion Electron Emission Microscope, also installed at SIRAD, allows SEE testing with micrometric sensitivity. For total dose tests, two facilities are presently available: an X-rays source and a 60Co γ-ray source. The 7MV Van de Graaff CN accelerator provides 1H beams in the energy range 2–7MeV and currents up to few μA for both total dose and bulk damage studies. At this facility, very high dose rates (up to ∼100 krad/s (SiO2)) can be achieved. Finally, also neutron beams are available,
produced at the CN accelerator, by the reaction d + Be ⇒ n+B
Hydrogen maser clocks in space for solid-Earth research and time-transfer applications: Experiment overview and evaluation of Russian miniature sapphire loaded cavity
The Observatoire Cantonal de Neuchatel (ON) is developing for ESTEC a compact H-maser for space use based upon a miniature sapphire loaded microwave cavity, a technique pioneered at VNIIFTRI. Various contacts between West-European parties, headed by ESA, and the Russian parties, headed by ESA, led to the proposal for flying two H-masers on Meteor 3M, a Russian meteorology satellite in low polar orbit. The experiment will include two masers, one provided by ON and the other by VNIIFTRI. T/F transfer and precise positioning will be performed by both a microwave link, using PRARE equipment, and an optical link, using LASSO-like equipment. The main objectives of the experiment are precise orbit determination and point positioning for geodetic/geophysical research, ultra-accurate time comparison and dissemination as well as in-orbit demonstration of operation and performance of H-masers. Within the scope of a preliminary space H-maser development phase performed for ESTEC at ON in preparation to the joint experiment, a Russian miniature sapphire loaded microwave cavity, on loan from VNIIFTRI, was evaluated in a full-size EFOS hydrogen maser built by ON. The experimental evaluation confirmed the theoretical expectation that with a hydrogen storage volume of only 0.65 liter an atomic quality factor of 1.5 x 10(exp 9) can be obtained for a -105 dBm output power. This represents a theoretical Allan deviation of 1.7 x 10(exp -15) averaged on a 1000 s time interval. From a full-size design to a compact one, therefore, the sacrifice in performance due to the reduction of the storage volume is very small
The Phase 0 of the NEPIR project at LNL
NEPIR (Neutron and Proton Irradiation facility) is the project of a new irradiation facility at INFN Legnaro National Laboratories (LNL). The facility will exploit the LNL 35-70 MeV high current proton cyclotron of the SPES complex, to feed two different compact neutron sources in order to generate high flux neutron beams with different energy spectra: quasi-monoenergetic neutron beams and atmospheric-like neutrons. This contribution focuses on the first stage of the construction of the facility: the NEPIR Phase 0, financed and in an advanced design phase. It will use a Be neutron production target capable of delivering up to ∼ 2 × 106 n cm−2 s −1
Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data
- …