738 research outputs found
Fermi surface in the hidden-order state of URuSi under intense pulsed magnetic fields up to 81~T
We present measurements of the resistivity  of URu2Si2
high-quality single crystals in pulsed high magnetic fields up to 81~T at a
temperature of 1.4~K and up to 60~T at temperatures down to 100~mK. For a field
\textbf{H} applied along the magnetic easy-axis \textbf{c}, a strong
sample-dependence of the low-temperature resistivity in the hidden-order phase
is attributed to a high carrier mobility. The interplay between the magnetic
and orbital properties is emphasized by the angle-dependence of the phase
diagram, where magnetic transition fields and crossover fields related to the
Fermi surface properties follow a 1/-law,  being the angle
between \textbf{H} and \textbf{c}. For , a
crossover defined at a kink of , as initially reported in [Shishido
et al., Phys. Rev. Lett. \textbf{102}, 156403 (2009)], is found to be strongly
sample-dependent: its characteristic field  varies from ~T
in our best sample with a residual resistivity ratio RRR of  to
~T in a sample with a RRR of . A second crossover is defined at
the maximum of  at the sample-independent characteristic field
~T. Fourier analyzes of SdH oscillations show
that  coincides with a sudden modification of the Fermi
surface, while  lies in a regime where the Fermi surface is smoothly
modified. For , i) no phase transition is
observed at low temperature and the system remains in the hidden-order phase up
to 81~T, ii) quantum oscillations surviving up to 7~K are related to a new and
almost-spherical orbit - for the first time observed here - at the frequency
~T and associated with a low effective mass
, and iii) no Fermi surface modification occurs
up to 81~T.Comment: 11 pages, 8 figure
High frequency magnetic oscillations of the organic metal -(ET)ZnBr(CHCl) in pulsed magnetic field of up to 81 T
De Haas-van Alphen oscillations of the organic metal
-(ET)ZnBr(CHCl) are studied in pulsed magnetic
fields up to 81 T. The long decay time of the pulse allows determining reliable
field-dependent amplitudes of Fourier components with frequencies up to several
kiloteslas. The Fourier spectrum is in agreement with the model of a linear
chain of coupled orbits. In this model, all the observed frequencies are linear
combinations of the frequency linked to the basic orbit  and to the
magnetic-breakdown orbit .Comment: 6 pages, 4 figure
Role of structural dynamics at the receptor G protein interface for signal transduction
GPCRs catalyze GDP/GTP exchange in the α-subunit of heterotrimeric G proteins (Gαßγ) through displacement of the Gα C-terminal α5 helix, which directly connects the interface of the active receptor (R*) to the nucleotide binding pocket of G. Hydrogen-deuterium exchange mass spectrometry and kinetic analysis of R* catalysed G protein activation have suggested that displacement of α5 starts from an intermediate GDP bound complex (R*•GGDP). To elucidate the structural basis of receptor-catalysed displacement of α5, we modelled the structure of R*•GGDP. A flexible docking protocol yielded an intermediate R*•GGDP complex, with a similar overall arrangement as in the X-ray structure of the nucleotide free complex (R*•Gempty), however with the α5 C-terminus (GαCT) forming different polar contacts with R*. Starting molecular dynamics simulations of GαCT bound to R* in the intermediate position, we observe a screw-like motion, which restores the specific interactions of α5 with R* in R*•Gempty. The observed rotation of α5 by 60° is in line with experimental data. Reformation of hydrogen bonds, water expulsion and formation of hydrophobic interactions are driving forces of the α5 displacement. We conclude that the identified interactions between R* and G protein define a structural framework in which the α5 displacement promotes direct transmission of the signal from R* to the GDP binding pocket
A smart telerobotic system driven by monocular vision
A robotic system that accepts autonomously generated motion and control commands is described. The system provides images from the monocular vision of a camera mounted on a robot's end effector, eliminating the need for traditional guidance targets that must be predetermined and specifically identified. The telerobotic vision system presents different views of the targeted object relative to the camera, based on a single camera image and knowledge of the target's solid geometry
Free backbone carbonyls mediate rhodopsin activation
Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins
The Roles of Transmembrane Domain Helix-III during Rhodopsin Photoactivation
Background: Rhodopsin, the prototypic member of G protein-coupled receptors (GPCRs), undergoes isomerization of 11- cis-retinal to all-trans-retinal upon photoactivation. Although the basic mechanism by which rhodopsin is activated is well understood, the roles of whole transmembrane (TM) helix-III during rhodopsin photoactivation in detail are not completely clear.
Principal Findings: We herein use single-cysteine mutagenesis technique to investigate conformational changes in TM helices of rhodopsin upon photoactivation. Specifically, we study changes in accessibility and reactivity of cysteine residues introduced into the TM helix-III of rhodopsin. Twenty-eight single-cysteine mutants of rhodopsin (P107C-R135C) were prepared after substitution of all natural cysteine residues (C140/C167/C185/C222/C264/C316) by alanine. The cysteine mutants were expressed in COS-1 cells and rhodopsin was purified after regeneration with 11-cis-retinal. Cysteine accessibility in these mutants was monitored by reaction with 4, 49-dithiodipyridine (4-PDS) in the dark and after illumination. Most of the mutants except for T108C, G109C, E113C, I133C, and R135C showed no reaction in the dark. Wide
variation in reactivity was observed among cysteines at different positions in the sequence 108–135 after photoactivation. In particular, cysteines at position 115, 119, 121, 129, 131, 132, and 135, facing 11-cis-retinal, reacted with 4-PDS faster than neighboring amino acids. The different reaction rates of mutants with 4-PDS after photoactivation suggest that the amino acids in different positions in helix-III are exposed to aqueous environment to varying degrees. Significance: Accessibility data indicate that an aqueous/hydrophobic boundary in helix-III is near G109 and I133. The lack of reactivity in the dark and the accessibility of cysteine after photoactivation indicate an increase of water/4-PDS accessibility for certain cysteine-mutants at Helix-III during formation of Meta II. We conclude that photoactivation resulted in water-accessible at the chromophore-facing residues of Helix-III.National Institutes of Health (U.S.) (grant GM28289)National Eye Institute (Grant Grant EY11716)National Science Foundation (U.S.) (grant EIA-0225609
Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation
The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor. © 2009 Nature America, Inc. All rights reserved
Phytochrome Mediated Responses in Agrobacterium fabrum: Growth, Motility and Plant Infection
The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1− and agp2− knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2
Key Amino Acids in the Bacterial (6-4) Photolyase PhrB from Agrobacterium fabrum
Photolyases can repair pyrimidine dimers on the DNA that are formed during UV irradiation. PhrB from Agrobacterium fabrum represents a new group of prokaryotic (6–4) photolyases which contain an iron-sulfur cluster and a DMRL chromophore. We performed site-directed mutagenesis in order to assess the role of particular amino acid residues in photorepair and photoreduction, during which the FAD chromophore converts from the oxidized to the enzymatically active, reduced form. Our study showed that Trp342 and Trp390 serve as electron transmitters. In the H366A mutant repair activity was lost, which points to a significant role of His366 in the protonation of the lesion, as discussed for the homolog in eukaryotic (6–4) photolyases. Mutants on cysteines that coordinate the Fe-S cluster of PhrB were either insoluble or not expressed. The same result was found for proteins with a truncated C-terminus, in which one of the Fe-S binding cysteines was mutated and for expression in minimal medium with limited Fe concentrations. We therefore assume that the Fe-S cluster is required for protein stability. We further mutated conserved tyrosines that are located between the DNA lesion and the Fe-S cluster. Mutagenesis results showed that Tyr424 was essential for lesion binding and repair, and Tyr430 was required for efficient repair. The results point to an important function of highly conserved tyrosines in prokaryotic (6–4) photolyase
- …
