804 research outputs found
Instability of a stalled accretion shock: evidence for the advective-acoustic cycle
We analyze the linear stability of a stalled accretion shock in a perfect gas
with a parametrized cooling function L ~ rho^{beta-alpha} P^alpha. The
instability is dominated by the l=1 mode if the shock radius exceeds 2-3 times
the accretor radius, depending on the parameters of the cooling function. The
growth rate and oscillation period are comparable to those observed in the
numerical simulations of Blondin & Mezzacappa (2006). The instability mechanism
is analyzed by separately measuring the efficiencies of the purely acoustic
cycle and the advective-acoustic cycle. These efficiencies are estimated
directly from the eigenspectrum, and also through a WKB analysis in the high
frequency limit. Both methods prove that the advective-acoustic cycle is
unstable, and that the purely acoustic cycle is stable. Extrapolating these
results to low frequency leads us to interpret the dominant mode as an
advective-acoustic instability, different from the purely acoustic
interpretation of Blondin & Mezzacappa (2006). A simplified characterization of
the instability is proposed, based on an advective-acoustic cycle between the
shock and the radius r_nabla where the velocity gradients of the stationary
flow are strongest. The importance of the coupling region in this mechanism
calls for a better understanding of the conditions for an efficient
advective-acoustic coupling in a decelerated, nonadiabatic flow, in order to
extend these results to core-collapse supernovae.Comment: 29 pages, 18 figures, to appear in ApJ (1 new Section, 2 new Figures
Two-phonon 1- state in 112Sn observed in resonant photon scattering
Results of a photon scattering experiment on 112Sn using bremsstrahlung with
an endpoint energy of E_0 = 3.8 MeV are reported. A J = 1 state at E_x =
3434(1) keV has been excited. Its decay width into the ground state amounts to
Gamma_0 = 151(17) meV, making it a candidate for a [2+ x 3-]1- two-phonon
state. The results for 112Sn are compared with quasiparticle-phonon model
calculations as well as the systematics of the lowest-lying 1- states
established in other even-mass tin isotopes. Contrary to findings in the
heavier stable even-mass Sn isotopes, no 2+ states between 2 and 3.5 MeV
excitation energy have been detected in the present experiment.Comment: 10 pages, including 2 figures, Phys. Rev. C, in pres
Relativistic Multiple Scattering Theory and the Relativistic Impulse Approximation
It is shown that a relativistic multiple scattering theory for hadron-nucleus
scattering can be consistently formulated in four-dimensions in the context of
meson exchange. We give a multiple scattering series for the optical potential
and discuss the differences between the relativistic and non-relativistic
versions. We develop the relativistic multiple scattering series by separating
out the one boson exchange term from the rest of the Feynman series. However
this particular separation is not absolutely necessary and we discuss how to
include other terms. We then show how to make a three-dimensional reduction for
hadron-nucleus scattering calculations and we find that the relative energy
prescription used in the elastic scattering equation should be consistent with
the one used in the free two-body t-matrix involved in the optical potential.
We also discuss what assumptions are involved in making a Dirac Relativistic
Impulse Approximation (RIA).Comment: 20 pages, 9 figures, Accepted for publication in Journal of Physics
Relativistic calculations of pionic and kaonic atoms hyperfine structure
We present the relativistic calculation of the hyperfine structure in pionic
and kaonic atoms. A perturbation method has been applied to the Klein-Gordon
equation to take into account the relativistic corrections. The perturbation
operator has been obtained \textit{via} a multipole expansion of the nuclear
electromagnetic potential. The hyperfine structure of pionic and kaonic atoms
provide an additional term in the quantum electrodynamics calculation of the
energy transition of these systems. Such a correction is required for a recent
measurement of the pion mass
Isospin Character of the Pygmy Dipole Resonance in 124Sn
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn
with the (a,a'g) coincidence method at E=136 MeV. The comparison with results
of photon-scattering experiments reveals a splitting into two components with
different structure: one group of states which is excited in (a,a'g) as well as
in (g,g') reactions and a group of states at higher energies which is only
excited in (g,g') reactions. Calculations with the self-consistent relativistic
quasiparticle time-blocking approximation and the quasiparticle phonon model
are in qualitative agreement with the experimental results and predict a
low-lying isoscalar component dominated by neutron-skin oscillations and a
higher-lying more isovector component on the tail of the giant dipole
resonance
Anatomical organization and spatiotemporal firing patterns of layer 3 neurons in the rat medial entorhinal cortex
Layer 3 of the medial entorhinal cortex is a major gateway from the neocortex to the hippocampus. Here we addressed structure-function relationships in medial entorhinal cortex layer 3 by combining anatomical analysis with juxtacellular identification of single neurons in freely behaving rats. Anatomically, layer 3 appears as a relatively homogeneous cell sheet. Dual-retrograde neuronal tracing experiments indicate a large overlap between layer 3 pyramidal populations, which project to ipsilateral hippocampus, and the contralateral medial entorhinal cortex. These cells were intermingled within layer 3, and had similar morphological and intrinsic electrophysiological properties. Dendritic trees of layer 3 neurons largely avoided the calbindin-positive patches in layer 2. Identification of layer 3 neurons during spatial exploration (n = 17) and extracellular recordings (n = 52) pointed to homogeneous spatial discharge patterns. Layer 3 neurons showed only weak spiking theta rhythmicity and sparse head-direction selectivity. A majority of cells (50 of 69) showed no significant spatial modulation. All of the ∼28% of neurons that carried significant amounts of spatial information (19 of 69) discharged in irregular spatial patterns. Thus, layer 3 spatiotemporal firing properties are remarkably different from those of layer 2, where theta rhythmicity is prominent and spatially modulated cells often discharge in grid or border patterns
Electric and magnetic dipole strength in <sup>58</sup>Ni from forward-angle proton scattering
Background: Electric and magnetic dipole strengths in nuclei at excitation energies well below the giant resonance region are of interest for a variety of nuclear structure problems including a possible electric dipole toroidal mode or the quenching of spin-isospin flip modes. Purpose: The aim of the present work is a state-by-state analysis of possible 1 and 1 transitions in 58Ni with a high-resolution (,′) experiment at 295 MeV and very forward angles including 0∘ and a comparison to results from studies of the dipole strength with the (,′) and (,′) reactions. Methods: The 1 and 1 cross sections of individual peaks in the spectra are deduced with a multipole decomposition analysis (MDA). They are converted to reduced 1 and spin 1 transition strengths using the virtual photon method of relativistic Coulomb excitation and the unit cross-section method, respectively. The experimental 1 strength distribution is compared to large-scale shell-model calculations with the effective GXPF1A and KB3G interactions. Results: In total, 11 1 and 26 1 transitions could be uniquely identified in the excitation energy region 6–13 MeV. In addition, 22 dipole transitions with preference for either 1 or 1 multipolarity and 57 transitions with uncertain multipolarity were found. Despite the high level density good agreement is obtained for the deduced excitation energies of =1 states in the three types of experiments indicating that the same states are excited. The (1) and (1) strengths deduced in the (,′) experiments are systematically smaller than in the present work because of the lack of information on branching ratios to lower-lying excited states and the competition of particle emission. Fair agreement with the (1) strengths extracted from the (,′) data is obtained after removal of 1 transitions uniquely assigned in the present work belonging to a low-energy toroidal mode with unusual properties mimicking 1 excitations in electron scattering. The shell-model calculations provide a good description of the isospin splitting and the running sum of the 1 strength. A quenching factor 0.74 for the spin-isospin part of the 1 operator is needed to attain quantitative agreement with the data. Conclusions: High-resolution forward-angle inelastic proton scattering experiments at beam energies of about 300 MeV are a highly selective tool for an extraction of resolved 1 and 1 strength distributions in medium-mass nuclei. Fair agreement with results from electron scattering experiments is obtained indicating a dominance of spin contributions to the 1 strength. Shell-model calculations are in good agreement with gross properties of the 1 strength distribution when a quenching factor for the spin-isospin part comparable to the one needed for a description of Gamow-Teller (GT) strength is included
Functional architecture of the rat parasubiculum
The parasubiculum is a major input structure of layer 2 of medial entorhinal cortex, where most grid cells are found. Here we investigated parasubicular circuits of the rat by anatomical analysis combined with juxtacellular recording/labeling and tetrode recordings during spatial exploration. In tangential sections, the parasubiculum appears as a linear structure flanking the medial entorhinal cortex mediodorsally. With a length of ∼5.2 mm and a width of only ∼0.3 mm (approximately one dendritic tree diameter), the parasubiculum is both one of the longest and narrowest cortical structures. Parasubicular neurons span the height of cortical layers 2 and 3, and we observed no obvious association of deep layers to this structure. The "superficial parasubiculum" (layers 2 and 1) divides into ∼15 patches, whereas deeper parasubicular sections (layer 3) form a continuous band of neurons. Anterograde tracing experiments show that parasubicular neurons extend long "circumcurrent" axons establishing a "global" internal connectivity. The parasubiculum is a prime target of GABAergic and cholinergic medial septal inputs. Other input structures include the subiculum, presubiculum, and anterior thalamus. Functional analysis of identified and unidentified parasubicular neurons shows strong theta rhythmicity of spiking, a large fraction of head-direction selectivity (50%, 34 of 68), and spatial responses (grid, border and irregular spatial cells, 57%, 39 of 68). Parasubicular output preferentially targets patches of calbindin-positive pyramidal neurons in layer 2 of medial entorhinal cortex, which might be relevant for grid cell function. These findings suggest the parasubiculum might shape entorhinal theta rhythmicity and the (dorsoventral) integration of information across grid scales
Shell evolution of stable N = 50-56 Zr and Mo nuclei with respect to low-lying octupole excitations
For the N = 50-56 zirconium (Z = 40) and molybdenum (Z = 42) isotopes, the evolution of subshells is evaluated by extracting the effective single-particle energies from available particle-transfer data. The extracted systematic evolution of neutron subshells and the systematics of the excitation energy of the octupole phonons provide evidence for type-II shape coexistence in the Zr isotopes. Employing a simplistic approach, the relative effective single-particle energies are used to estimate whether the formation of low-lying octupole-isovector excitations is possible at the proposed energies. The results raise doubts about this assignment
Dipole Strength Distributions from HIGS Experiments
A series of photon scattering experiments has been performed on the double-beta decay partners 76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesi
- …