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Dipole strength distributions from HIGS Experiments
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Abstract. A series of photon scattering experiments has been performed on the double-beta decay partners
76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray
beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used
to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows
for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed
excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and
the Axel-Brink hypothesis.

1 Introduction
The nuclear dipole response, dominated by the giant
dipole resonance (GDR), has raised enhanced interest in
recent years, mainly due to dipole strength on the low-
energy tail of the GDR. Besides collective excitations in
the valence space, such as the magnetic nuclear scissors
mode [1–4] or the 1− member of the quadrupole-octupole
coupled multiplet (see, e.g., Ref. [5]), there has been a
focus on the so-called pygmy dipole resonance (PDR),
which is typically located around 5 to 8 MeV excitation
energy (for a recent review on the PDR, see Ref. [6]).
A common interpretation of the PDR in nuclei with excess
neutrons is the vibration of a proton-neutron core against a
neutron skin [7–10]. The amount of the energy-weighted
sum rule of the E1 excitation strength which is absorbed
in the pygmy resonance is of high interest. To obtain
this amount experimentally is difficult. Firstly, the PDR
is located on the tail of the GDR, the parametrization of
which is not clear at low energies. Therefore, the deriva-
tion of proper photon strength functions (PSFs) for the E1
response is highly desirable. Secondly, due to typically
high level densities, hence, a high degree of fragmenta-
tion of E1 strength in the energy region of interest, a com-

ae-mail: vw@ikp.tu-darmstadt.de

plete measurement of all E1 excited states is not possible.
Thirdly, the often not (directly) observed decay behavior
of dipole excited states in the region poses a problem to a
proper derivation of their excitation strengths.

In this paper, the focus will be on the present tech-
niques to derive E1 strength distributions from a com-
bination of nuclear resonance fluorescence (NRF) exper-
iments using continuous bremsstrahlung beams in com-
bination with nearly monoenergetic, fully polarized pho-
ton beams as available at the High Intensity Gamma-ray
Source (HIGS) facility at TUNL, on the campus of Duke
University. Results from a series of experiments on the nu-
clei 76Se and 76Ge, performed at the S-DALINAC facility
at TU Darmstadt and at HIGSwill be discussed. Data have
been obtained for low-lying dipole excited states in this
candidate pair for neutrino less double-beta (0ν2β) decay,
which is potentially important in the discussion of γ-ray
background in large-scale experiments searching for this
rare (if existing) decay mode. In this work, we will focus
on the PDR region, and compare the new data to calcula-
tions within a statistical approach.
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Figure 1. Asymmetries (A) of ground-state transitions from dipole excited states in 76Ge. Bars mark the expected limits for positive
and negative parity states, the dashed line marks isotropy. E1 (M1) excited negative (positive) parity states have an asymmetry of -1
(+1).

2 Experiments
In the following, a brief overview of the performed exper-
iments is given. A more extensive review of the experi-
ments, for the case of 76Se, is given in Refs. [11, 12], and
a publication for analogous work on 76Ge is forthcoming.

2.1 Bremsstrahlung

Experiments using photon beams from bremsstrahlung
were conducted at the Darmstadt High Intensity Photon
Setup (DHIPS) [13] at the S-DALINAC facility at TU
Darmstadt. Electron beams of 5, 7, and 9 MeV in en-
ergy for 76Se, and 9 MeV only for 76Ge were provided by
the injector of the S-DALINAC. The electron beams were
converted into continuous-energy photon beams on a thick
copper radiator plate, with maximum energies correspond-
ing to the initial electron energies. The photon beams sub-
sequently passed an approximately 1-m long copper colli-
mator before impinging on the respective targets.

Target nuclei were photo-excited with integrated cross
sections of

IS
i =

(
π
�c
Ex

)2 2Jx + 1
2J0 + 1

Γ0Γi

Γ
, (1)

where Ex is the excitation energy, Jx,0 are the excited-state
and ground-state spins, respectively (i.e., Jx = 1, J0 = 0
here), Γi are partial decay widths from the state Jx to a
lower-lying state Ji (i = 0 for the ground state) and Γ is
the total decay width

Γ =
∑

i

Γi =
�

τ
. (2)

Absolute integrated cross sections have beenmeasured rel-
ative to calibration standards (27Al and 11B), which were
added to the targets. Details of the NRF technique can be
found in Ref. [14]. For most observed states, only the
ground-state decay, hence, the corresponding integrated

cross section IS
0 , could be measured, since other transitions

to lower-lying excited states were masked by the exponen-
tially increasing background toward lower energies. Due
to the diminishing photon flux, sensitivity at the highest
energies was limited. In addition, no parities were mea-
sured in the bremsstrahlung experiment, since the beam
was not polarized and Compton polarimeters are typically
not sensitive at high γ-ray energies. These problems have
been overcome in the HIGS experiments.

2.2 Near monoenergetic, polarized beams

Complementary experiments were performed at the HIGS
facility at TUNL. Here, near-monoenergetic photon beams
with a beam energy spread of approximately 3% were
produced in a free-electron laser through Compton-
backscattering [15]. The main advantages are the narrow
bandwidth of the photon beams and the near 100% polar-
ization achieved at HIGS. This allows excitations of spe-
cific states, or small regions of states, and determination
of their parities through simple polarimetry [16]. Back-
ground toward low energies still exists, but is largely sup-
pressed as compared to bremsstrahlung experiments. With
detectors at 90o with respect to the beam axis, parallel, i.e.,
horizontal at HIGS (h), and vertical (v) to the polarization
vector of the incoming photons, one obtains an experimen-
tal asymmetry in the count rates,

A =
Nh − Nv
Nh + Nv

, (3)

where Nh,v are the respective observed intensities, Q is an
attenuation factor due to finite detector size. Hence, transi-
tions to the ground state from M1 excited states have ide-
ally A = 1, and from E1 excited states A = −1. The factor
Q causes an attenuation of those values due to the finite
detector solid angles. Figure 1 shows the first results for
asymmetries of ground-state decays from dipole excited
states in 76Ge. Most observed states have negative parity.
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Figure 2. A peak from the 2+2 → 0+1 transition observed in the horizontal (blue, bottom) and vertical (black, top) detectors, on top of
the non-resonant background, far below the beam energy. The peak at 1022 keV stems from e+e− annihilation.

In addition to parities, cross sections of newly ob-
served states can be deduced relative to those of neighbor-
ing states with already known cross sections (e.g., from
the bremsstrahlung experiment), which are covered in the
same beam setting. The shape of the photon flux at the tar-
get position is simulated using GEANT4, and compared
to a spectrum taken with an additional detector at zero de-
grees, which has been placed into an attenuated beam for
each setting.

Not all transitions to lower-lying states were observed
in the experiments. However, following Ref. [17] one can
assume that most decays pass through the first few excited
2+ states. The observed decays (see Fig. 2 for an example)
from those states can then be used to obtain an average
branching ratio for decays to excited states over decays
to the ground state for each beam setting. This informa-
tion can then be used to correct the observed cross sec-
tions from ground-state decays by the indirectly observed
branching via

IS
tot = IS

Σ,0

⎛⎜⎜⎜⎜⎜⎝1 +
∑

i

NiW0(θ)
NΣ,0Wi(θ)

⎞⎟⎟⎟⎟⎟⎠ , (4)

where IS
Σ,0 is the sum of individual integrated ground-

state decay cross sections of all states observed within the
beam energy window, and NΣ,0 are the respective intensi-
ties of these transitions with known angular distributions
W0. Ni are the intensities of the observed 2+ decays to
the ground state, with angular distributions Wi, which are
nearly isotropic. Corrections to efficiency calibrations due
to non-resonant absorption in the extended target are ab-
sorbed in the intensities Ni. A more detailed description of
the procedure can be found in Ref. [12].

3 Results and discussion

3.1 Obtained cross sections

For 76Se, as seen in Fig. 10 of Ref. [12], the low-energy
E1 cross sections from the experiments discussed in this

paper connect quite smoothly to (γ, n) cross section data
from Carlos et al. [18]. Some enhancement may exist
around 7 MeV in excitation energy, but a conclusion on
enhanced E1 strength at low energies depends strongly on
the fit function and extrapolation used for the GDR. Two
Lorentzians (standard [SLO] and generalized [GLO]) had
been fitted to the GDR, giving contradictory conclusions
on the presence of enhanced strength [12]. The prelim-
inary results for 76Ge show a very similar behavior, ex-
cept that no structure appears around 7 MeV. In both cases
the obtained cross sections follow Lorentzian parametriza-
tions fit to the GDR and the new low-energy data. Only at
energies below 6 MeV do the data drop significantly be-
low the Lorentzian parametrizations, as is typically found
in a wide range of nuclei.

The lack of any enhancement in the expected PDR re-
gion around 7 MeV is surprising. Many isotopes, albeit in
different regions, have been investigated to date (see the
review in Ref. [6]). Complementary α-scattering experi-
ments like, e.g., in Ref. [19], clearly show that the dipole
response changes structure from purely isovector at high
energies to possessing significant isoscalar components at
low, PDR energies. Hence, the lack of an enhancement in
the case of the Ge and Se isotopes investigated in this work
may point in a new set of directions. One is the potential
influence of deformation toward a broadening of the res-
onance. Another may be a relatively small E1 strength
carried by the PDR, so that we do not observe signifi-
cant (in view of experimental errors) enhancement of E1
strength. A third possibility is that the simple choice of the
Lorentzian parametrization masks potential PDR strength
in the region of interest. Different Lorentzian parametriza-
tions have been suggested, e.g., in Ref. [20].

Since the precision of data and analysis methods have
recently improved vastly, especially through the use of the
HIGS facility, we are approaching the situation where we
can probe PSFs by comparison of data to statistical cal-
culations. Methods in data analysis and input PSFs vary
in recent works (see, e.g., Refs. [21–23]). In the follow-
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ing section we will confront our results with a statistical
approach.

3.2 Statistical calculations

A new code has been developed within this work to obtain
a prediction of photo-cross sections, based on the known
level scheme at low energies, on a simulated level scheme
above a certain energy threshold involving level densities
and a Wigner distribution for level spacings, and on a trial
PSF. With this input, average decay widths of dipole ex-
cited states to lower-lying states are computed and then
varied by Porter-Thomas fluctuations. The Axel-Brink hy-
pothesis [24, 25] is assumed to be valid. In order to com-
pare to experiment, a detection limit corresponding to the
experimental sensitivity has been imposed on the calcu-
lated data. In the following paragraphs, we focus on partial
cross sections for ground-state decays only.

Simple assumptions for PSFs have been used to start,
namely, the PSF suggested by Kadmenskii, Markushev,
and Furman (KMF), which was derived in the low-energy
limit, and a double-Lorentzian (SLO) function fitted to
data. While the KMF underpredicts data at higher ener-
gies, the SLO yields an overprediction at low energies. As
a compromise, following the PhD work of M. Krtička, we
choose a PSF from a combination of the KMF and SLO
PSFs, using the KMF at low energy, the SLO at high en-
ergy, and a linear cross-over from KMF to SLO around
the energy where the steep rise in observed cross sections
occurs. Figure 3 shows the present status of the statis-
tical calculations in comparison to data from the above-
mentioned experiments for 76Se. The data are integrated
over a running bin of 250-keV width.

It is evident from Fig. 3 that the combined KMF/SLO
E1 PSF overpredicts data at high energies, unless the ex-
perimental detection limit is taken into account (dashed
lines). Furthermore, the agreement with data is enhanced
if also M1 strength is considered. Since data onM1 excita-
tions in the region of interest is in general sparse, the com-
binedM1 strength observed in the present experiments has
been used to derive an M1 strength function (fit to a single-
particle strength function, i.e., a constant value) as input to
the calculations. This lowers the calculated values for E1
cross sections at higher energies, and gives good agree-
ment with data.

4 Conclusions

A series of NRF experiments, using continuous unpolar-
ized bremsstrahlung beams, as well as near-monoenergetic
fully polarized beams from Compton-backscattering,were
performed on 76Ge and 76Se. The near-final status of the
data analysis does not show an enhancement of E1 strength
above fitted SLO functions fit to all available E1 response
data. Statistical calculations have been performed and
show good agreement with data when assuming a hybrid
of KMF and SLO E1 PSFs. Note that the inclusion of
M1 strength in these calculations significantly enhances

Figure 3. Cross sections, integrated over a running window of
250-keV width, for photo-excitation of 1− states in 76Se and de-
cay to the ground state from data (red line). The (upper) solid
black line shows the result of the statistical calculation consid-
ering only the combined KMF/SLO PSF for E1 strength. The
(lower) solid blue line includes a Weisskopf estimate for M1
strengths. The respective dashed lines impose the experimental
detection limit on the calculations.

agreement with data, and points to the importance of fur-
ther measurements of M1 strengths at the relevant ener-
gies. We stress that there is experimental evidence for a
change in the wave functions of E1 excited states from the
GDR region toward low energies, corresponding to a PDR.
However, the present results show that it may be difficult
to quantify the excess of E1 strength due to a PDR. The
extraction of such PDR E1 strength largely depends on the
choice of PSFs, which are at present dominated by data on
the GDR with given uncertainties from conflicting mea-
surements [26]. Data becoming available today, especially
from the HIGS facility, start allowing us to constrain PSFs
through the use of statistical calculations.

5 Outlook
Additional data for both isotopes have been taken at en-
ergies below 4 MeV, which will give access to collective
excitations such as the 1+ scissors mode and quadrupole-
octupole coupled 1− states. For 76Ge, coincidence data
taken with the new γ3 setup [27] will elucidate the decay
behavior of such excitations. We also observed a dipole
excited state at 3952 keV in 76Ge, which is a potential
source of background near the expected signal in 0ν2β ex-
periments at 2040 keV.
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