
The University of Southern Mississippi The University of Southern Mississippi 

The Aquila Digital Community The Aquila Digital Community 

Faculty Publications 

9-1-2007 

Relativistic Multiple Scattering Theory and the Relativistic Impulse Relativistic Multiple Scattering Theory and the Relativistic Impulse 

Approximation Approximation 

Khin Maung Maung 
University of Southern Mississippi, Khin.Maung@usm.edu 

John W. Norbury 
University of Southern Mississippi, john.norbury@usm.edu 

Trina Coleman 
Howard University, tlcoleman@howard.edu 

Follow this and additional works at: https://aquila.usm.edu/fac_pubs 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Maung, K. M., Norbury, J. W., Coleman, T. (2007). Relativistic Multiple Scattering Theory and the 
Relativistic Impulse Approximation. Journal of Physics G-Nuclear and Particle Physics, 34(9), 1861-1878. 
Available at: https://aquila.usm.edu/fac_pubs/1936 

This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for 
inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more 
information, please contact Joshua.Cromwell@usm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aquila Digital Community

https://core.ac.uk/display/301287212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aquila.usm.edu/
https://aquila.usm.edu/fac_pubs
https://aquila.usm.edu/fac_pubs?utm_source=aquila.usm.edu%2Ffac_pubs%2F1936&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=aquila.usm.edu%2Ffac_pubs%2F1936&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Joshua.Cromwell@usm.edu


ar
X

iv
:0

70
5.

46
27

v1
  [

nu
cl

-t
h]

  3
1 

M
ay

 2
00

7

Relativistic Multiple Scattering Theory and the
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Abstract. It is shown that a relativistic multiple scattering theory for hadron-

nucleus scattering can be consistently formulated in four-dimensions in the context

of meson exchange. We give a multiple scattering series for the optical potential and

discuss the differences between the relativistic and non-relativistic versions. We

develop the relativistic multiple scattering series by separating out the one boson

exchange term from the rest of the Feynman series. However this particular separation

is not absolutely necessary and we discuss how to include other terms. We then show

how to make a three-dimensional reduction for hadron-nucleus scattering calculations

and we find that the relative energy prescription used in the elastic scattering equation

should be consistent with the one used in the free two-body t-matrix involved in the

optical potential. We also discuss what assumptions are involved in making a Dirac

Relativistic Impulse Approximation (RIA).

PACS numbers: 24.10.Jv, 24.10.Cn

1. Introduction

The Relativistic Impulse Approximation (RIA) is one of the most successful tools in

describing hadron-nucleus scattering observables. At the beginning it was prompted by

the success of Dirac phenomenology [1] in describing proton-nucleus scattering where a

parameterized optical potential was used in a Dirac equation. Soon after this, guided by

the non-relativistic tρ approximation of the optical potential, a relativistic generalization

http://arxiv.org/abs/0705.4627v1
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(RIA) was made [2]. Over the years other authors [3, 4] have also successfully used

the RIA with various prescriptions for the t-matrix and the target density. In the

case of meson-nucleus scattering, the RIA optical potential was successfully used in

the Kemmer-Duffin-Patiau equation [5]. Recently, a Dirac-RIA was used in analyzing

neutron densities [6] and nuclear densities arising from chiral models [7]. which shows

that the RIA is also useful in the studies of the bulk properties of nuclear matter.

The RIA is a very useful tool in medium energy nuclear physics. It is based upon the

existence of a multiple scattering theory which obviously must have some resemblance

to non-relativistic multiple scattering theory. In the non-relativistic theory, there is no

ambiguity in what equation is to be used as the scattering equation. There is only one

equation available, namely the Schrodinger equation. For the NN amplitudes, there are

several possible choices. Some are pure phenomenological fits and some are calculated

from potential models.

In the relativistic case, even the use of Dirac equation in nucleon-nucleus scattering

is questionable. At best, the use of the Dirac equation can be a good approximation.

When the Dirac equation is used in describing the passage of the projectile nucleon

through the nucleus, the tacit assumption is that the nucleus is infinitely heavy, but

in reality it is not. There are also ambiguities in choosing the NN amplitude to be

used in the RIA optical potential, since there are in principle infinitely many relativistic

two-body quasi-potential equations that can be used in producing NN amplitudes. In

order to address these issues, it is important to develop a relativistic multiple scattering

theory (RMST). As far as we are aware, there has been only one attempt to develop an

RMST which was done by Maung and Gross [8, 9]. In their approach they start from

the sum of all meson exchange diagrams between the projectile and target nucleus. By

considering the cancellation between the box and crossed-box diagrams, they concluded

that the projectile-target propagator should be a three-dimensional propagator with the

target on mass-shell when the target is in the ground state. In order to avoid spurious

singularities, Maung and Gross chose the propagator with the projectile nucleon on

mass-shell when the target is in the excited state. They developed an RMST and

argued that the NN amplitude that should be used in the RIA optical potential should

be calculated from a covariant 3-dimensional equation with one particle on-mass-shell.

We revisit the formulation of an RMST using a meson exchange model. Since the

cancellation of the box and crossed-box diagrams does not work satisfactorily when spin

and isospin are included, we develop an RMST which is independent of this cancellation.

The paper is organized as follows. We briefly review the non-relativistic multiple

scattering formalism of Watson [10]. We then develop an RMST for the optical potential

from a meson exchange model in four-dimensions. Also we discuss what is involved in

making the Relativistic Impulse Approximation. Finally we discuss the validity of using

the Dirac equation for proton-nucleus scattering and examine the alternatives. This

paper makes reference only to pion exchange, but in principle any number of different

boson exchanges, such as σ, ρ, ω etc. could be included. One only has to replace the pion

exchange with these other bosons. In this paper we emphasize the multiple scattering
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formalism and not the calculation of nucleon-nucleon amplitudes, and hence we do not

make any specification of meson-nucleon couplings or form factors to be used. In the

literature numerous authors over the years have used different relativistic equations

and meson-nucleon couplings and various types of form factors have been employed in

nucleon-nucleon phenomenology.

2. Review of non-relativistic theory

This section contains a review of non-relativistic theory following references [4, 9, 11,

12, 13, 14], which provide an introduction to the topics of non-relativistic [11, 12, 13]

and relativistic [4, 9, 11, 14] multiple scattering theory. This review is included so that

the reader can more easily understand the new relativistic multiple scattering theory

introduced later in the paper. The full pA hamiltonian is given by

H = H0 + V = h0 +HA + V (1)

where h0 is the kinetic energy operator of the projectile and HA is the full A-body

hamiltonian of the target. HA contains all the target nuclear structure information with

HA =
A∑

i=1

hi +
A∑

i<j

vij (2)

This target Hamiltonian is just the sum of the target nucleon kinetic energies plus the

sum of their pair interactions [11]. The residual interaction V is given by the sum of

the interactions between the projectile and target particles,

V =
A∑

i=1

v0i (3)

where v0i denotes the interaction between the projectile, labeled particle “0” and the

target nucleon labeled with index “i”. We also write the T -matrix,

T ≡
A∑

i=1

T0i (4)

This and equation (3) are shown using diagrams defined in Figure 1 and defined in this

way, the diagrams themselves can then be easily iterated, as shown later.

The eigenstates (i.e. nuclear bound states) of the nuclear target Hamiltonian HA satisfy

HA|φ
A
n 〉 = En|φ

A
n 〉 (5)

From the beginning the A-body problem is separated from the rest and we assume that

there is some means of obtaining the solution of this A-body bound state problem. The

projectile scattering eigenstates satisfy

h0|k〉 = Ek|k〉 (6)

The eigenstates of the full unperturbed pA Hamiltonian H0 = h0 +HA satisfy

H0|Φ〉 = E|Φ〉 (7)
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Figure 1. Diagrams of the definitions V ≡
A∑
i=1

v0i (top) and T ≡
A∑
i=1

T0i (bottom) for

a target containing 3 particles.

where the energy E is total kinetic energie of the projectile and target plus the

eigenenergies of the target. In the lab frame the target kinetic energy is zero. The

initial and final states are

|Φi〉 = |φi〉|ki〉 , |Φf〉 = |φf〉|kf〉 (8)

The transition amplitude between different intial and final states of the same energy is

Tfi ≡ 〈Φf |T |Φi〉 (9)

with the T matrix operator given by the Lippman-Schwinger equation (LSE),

T = V + V G0T (10)

where the free propagator of the pA system is

G0 =
1

E −H0 + iη
=

1

E − h0 −HA + iη
(11)

The diagrammatic representation of the LSE is shown in Figure 2. Note that there are

three energies involved in the evaluation of 〈kf |T (E)|ki〉, where the energy E in T (E)

is the energy appearing in G0 above and in equation (7). There is also the initial energy

of the projectile Ei and the final energy Ef of the scattered projectile and any emitted

particles. If the three energies are all different the process is described as completely off-

energy-shell [12] and we have the completely off-energy-shell T -matrix 〈kf |T (E)|ki〉 [12].

We can also define two half off-energy-shell T -matrices as 〈kf |T (Ei)|ki〉 or 〈kf |T (Ef)|ki〉

when E = Ei or E = Ef . These three amplitudes become equal in the completely on-

energy-shell situation where E = Ei = Ef [12].

2.1. First order multiple scattering

Substituting (3) into (10) gives what we call the Lippman-Schwinger expansion,

T =
A∑

i=1

v0i +
A∑

i=1

v0iG0T (12)

with the ith term

T0i ≡ v0i + v0iG0T = v0i + v0iG0

∑

j

T0j (13)
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Figure 2. Diagram of the Lippman-Schwinger equation, T = V +V G0T , for nucleon-

nucleus scattering. The propagator G0 = 1

E−h0−HA+iη
is shown by the vertical dashed

line, which goes through all of the nucleons in the target because the propagator

contains the full nuclear hamiltonian HA.

which, upon iteration gives [11]

T0i ≡ v0i + v0iG0

∑

j

v0j + · · · (14)

Suppose the target is a nucleus with three nucleons. Then this expression is

T0i ≡ v0i + v0iG0(v01 + v02 + v03) + · · · (15)

where the first term represents a single interaction between the projectile and the i-th

target nucleon. The collection of second terms represent a double interaction between

the projectile and the i-th target nucleon. This consists of a single interaction between

the projectile and the i-th target nucleon, followed by propagation represented by G0 and

then another single interactions between the projectile and each of the target nucleons.

Figures 3 and 4 show the series for a proton scattering from a nucleus with three

nucleons. One can see that the diagram definitions in Figure 1 allows for the diagrams

themselves to be iterated as in Figures 3 and 4.

Each higher order term in (14) contains terms where the interaction occurs multiple

times on the same target nucleon. These can be separated off by writing

T0i = v0i + v0iG0v0i + v0iG0v0iG0v0i · · ·+ v0iG0

∑

j 6=i

v0j + · · · (16)

= t0i + v0iG0

∑

j 6=i

v0j + · · · (17)

with (see Figure 5)

t0i ≡ v0i + v0iG0t0i = v0i + v0iG0v0i + v0iG0v0iG0v0i + · · · (18)

Write equation (13) as

T0i ≡ v0i + v0iG0T = v0i + v0iG0

∑

j

T0j (19)

= v0i + v0iG0T0i + v0iG0

∑

j 6=i

T0j (20)

Rearrange as

(1− v0iG0)T0i = v0i + v0iG0

∑

j 6=i

T0j (21)

giving

T0i = (1− v0iG0)
−1v0i + (1− v0iG0)

−1v0iG0

∑

j 6=i

T0j (22)
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Figure 3. Diagram of the Lippman-Schwinger equation and its expansion,

T = V + V G0T =
A∑
i=1

v0i +
A∑
i=1

v0iG0T =
A∑
i=1

v0i +
A∑
i=1

v0iG0

∑
j

T0j

Figure 4. Diagram of the ith term of the Lippman-Schwinger equation and its

expansion, T0i = v0i + v0iG0T = v0i + v0iG0

∑
j

T0j

Figure 5. Diagram of the single scattering term, t0i ≡ v0i+v0iG0t0i = v0i+v0iG0v0i+

v0iG0v0iG0v0i + · · ·

Using the binomial series 1
1−x

= 1 + x+ x2 + · · · gives

(1− v0iG0)
−1v0i = v0i + v0iG0v0i + v0iG0v0iG0v0i + · · · = t0i (23)
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to finally give the Watson multiple scattering series [10, 11, 12]

T0i = t0i + t0iG0

∑

j 6=i

T0j (24)

The advantage of this series is that it is an expression for the full T matrix involving

scattering amplitudes toi rather than potentials voi, with each toi containing an infinite

number of the voi terms.

2.2. Single scattering approximation (SSA)

The single scattering approximation is

T0i ≈ t0i (25)

so that (12) becomes

T ≡
A∑

i=1

T0i ≈
A∑

i=1

t0i = t01 + t02 + t03 + · · · (26)

The single scattering approximation is shown in Figure 6, and “may be valid for weak

scattering or for dilute systems. This works for electron scattering” [12]. Tandy [11]

mentions that the SSA “makes a great deal of sense, since the projectile, once it comes

close to a given target particle may multiply interact with that particle, but once it is

ejected will, with a high degree of probability, “miss” all the other target particles.”

Figure 6. Diagram of the single scattering approximation T ≈
A∑
i=1

t0i (left diagram)

or the ith term T0i ≈ t0i (right diagram).

2.3. Impulse approximation (IA)

Tandy explains the SSA as follows [11]. “The required amplitude described by t0i does

not correspond to the solution of a (free) nucleon-nucleon scattering problem. Because

of the presence of HA in the Green’s function operator G0 of equation (18), the motion

of nucleon i is governed not only by its interaction v0i with the projectile, but also by

its interaction with the other constituents of the target. A further approximation can

be envisaged in which HA is assumed to simply set an energy scale so that the solution

of equation (18) might be replaced by the solution of a free nucleon-nucleon scattering

problem. With this interpretation of t0i, equation (26) is referred to as the impulse

approximation.” Thus there are two pieces to the single scattering IA The first piece

consists of the SSA but with the replacement [12]

t0i ≈ tfree0i (27)
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and the second piece consists of using the free Green function

G0 ≡
1

E − h0 −HA

≈ Gfree
0 ≡

1

E − h0 − hi

(28)

This essentially means that the target nucleus is treated as though it is not bound.

2.4. Optical potential and Watson series

For elastic scattering it is useful to use an optical potential which reduces the orginal

many-body elastic scattering problem to a one-body problem. All the complicated

many-body problems are now included in the optical potential. Therefore for practical

calculations approximations have to be made to determine the optical potential to be

used in the scattering equation. We follow Feshbach [11, 15, 16] and define a ground

state projector P and an operator Q which projects onto the complementary space of

the excited target states including inelastic break-up states [11, 15, 16] so that

P +Q = 1 (29)

where the projector of the target ground state is

P ≡ |φ0〉〈φ0| (30)

with |φ0〉 denoting the target nuclear ground state, giving

P |φα〉 = |φ0〉〈φ0|φα〉 = |φ0〉δα0 = |φ0〉 (31)

Now for elastic scattering the initial and final states are the ground state [11], namely

|φi〉elastic = |φf〉elastic = |φ0〉 (32)

so that

Tfi elastic ≡ 〈Φf |T |Φi〉elastic = 〈kf |〈φf |T |φi〉|ki〉 = 〈kf |〈φ0|T |φ0〉|ki〉 (33)

= 〈Φf |PTP |Φi〉 (34)

Thus for elastic scattering

Telastic ≡ PTP (35)

In analogy with the LSE (10), define the optical potential as [11]

PTP ≡ PUP + PUPG0PTP (36)

or

T ≡ U + UPG0T (37)

U = V + V G0QU (38)

This will help us obtain the microscopic content of the optical potential. Equations

(37) and (38) are completely equivalent to the Lippman-Schwinger equation (10). This

is easily seen by writing U = (1 − V G0Q)−1V and substitute into (37). Multiply the
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new (37) by 1 − V G0Q and (10) results. Because P 2 = P and Q2 = Q and P , Q both

commute with G0, then instead of (37) and (38) we can define U differently and write

T ≡ U + UPG0PT (39)

U = V + V QG0QU (40)

These equations are also completely equivalent to the Lippman-Schwinger equation (10).

We shall use the above two equations, instead of (37) and (38) from now on. Following

definition (12) we now define

U ≡
A∑

i=1

U0i (41)

and similar to equation (13), we have

U0i = v0i + v0iQG0QU = v0i + v0iQG0Q
∑

j

U0j (42)

Now define [10, 17] an operator τi

τ0i ≡ v0i + v0iQG0Qτ0i (43)

which is analogous to (18). Therefore we get the Watson multiple scattering series for

the optical potential [10, 11, 17]

U0i = τ0i + τ0iQG0Q
A∑

j 6=i

U0j (44)

analogous to (24). Summing gives

U =
A∑

i=1

τ0i +
A∑

i=1

τ0iQG0Q
A∑

j 6=i

U0j =
A∑

i=1

τ0i +
A∑

i=1

τ0iQG0Q
A∑

j 6=i

τ0j + · · · (45)

One may ask why we went to all this trouble to develop an optical theory. Why don’t

we just calculate the ground state T -matrix element 〈0|T |0〉? We could calculate matrix

elements using either the Lippman-Schwinger expansion in equation (12) or the Watson

series in equation (24). The trouble is that both equations involve G0, which we have

seen involves a sum over all excited states, which makes the LSE very difficult to solve.

However with T expressed in terms of U in equation (39), we see that it contains the

term PG0P which means that it only includes intermediate states with the target in the

ground state. The single scattering approximation or the first order optical potential

is obtained by keeping the first term only. The successive terms can be interpreted as

the double scattering term, triple scattering terms etc. and hence the name multiple

scattering. The first order Watson optical potential is [9]

U =
A∑

i=1

τ0i (46)

but τ is not the free two-body tfree matrix because of the presence of the many body

propagator QG0Q in (43), where all intermediate states are in excited states. For
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practical calculations a free two-body t-matrix is more easily available. The free two-

body t matrix is defined

tfree0i ≡ v0i + v0igt
free
0i (47)

where g is the free two body propagator. The relation between tfree and the Watson

operator τ is

τ0i = tfree0i + tfree0i (QG0Q− g)τ0i (48)

For high projectile energies one usually approximates τ by tfree (impulse approximation)

and obtains the first order Watson impulse approximation optical potential

U1st
impulse =

A∑

i=1

tfree0i (49)

The Watson optical potential in terms of the free two body t matrix is usually written

U =
A∑

i=1

tfree0i +
A∑

i=1

tfree0i (QG0Q− g)U0i +
A∑

i=1

A∑

j 6=i

tfree0i QG0QU0j (50)

=
A∑

i=1

tfree0i +
A∑

i=1

tfree0i (QG0Q− g)tfree0i +
A∑

i=1

tfree0i QG0Q
A∑

j 6=i

tfree0j + · · · (51)

up to second order. Obviously the first term is the single scattering term, the second

term is the single scattering propagator correction term and the third term is the double

scattering term etc. The first term alone gives the single scattering or the first-order

Impulse Approximation (IA) optical potential operator. It is important to note that it is

not the same as approximating the Watson τ with free t-matrix at the single scattering

level. As can be seen from the above equation there also is a propagator correction term

at the single scattering level although it is second order in t. Actually the propagator

correction term exists to all orders for each level of scattering, i.e. for single scattering,

double scattering etc. The propagator correction term can be interpreted as the medium

correction term since it corrects the use of free propagator instead of the propagator

with the excited intermediate target state. For high projectile energies the differences

between τ and tfree become negligible. The last term represents the multiple scattering.

For non-relativistic calculations tfree can be obtained from (47) by using a choice of v

such as the Reid potential.

3. Relativistic multiple scattering

Now we discuss a formulation of an RMST in the context of meson exchange. That is,

the interaction between the projectile and the A-body target nucleus will be mediated by

meson exchange. We start from the fact that the t-matrix for the relativistic projectile-

target scattering is given by the Bethe-Salpeter equation where the kernel is the sum

of all two-body (projectile and the A-body target nucleus) irreducible diagrams. The

derivation of a multiple scattering series from a field theoretical Lagrangian is a very

difficult and open problem. We want to develop a multiple scattering theory from the
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meson exchange point of view and want to see what approximations are involved in the

RIA. Therefore in all the diagrams, all self energy and vertex corrections are included

as renormalized masses and vertices with form factors. The kernel of the equation is

denoted by V and diagrams up to the fourth order in the meson-nucleon coupling are

shown in Figure 7.

(a) (b) (c)

(d) (e)

(f)

Figure 7. Diagrams in the kernel of the nucleon-nucleus Bethe-Salpeter equation up

to the fourth order in the coupling. The projectile is represented by a single line and

the target is represented by a double line.

The Bethe-Salpeter equation for the scattering is

T = V + V G0T (52)

where G0 is the four-dimensional two-body propagator of the projectile-target system.

The first term in V shown in Figure 7a is the sum of one boson exchange interactions

between the projectile and the target nucleons. We label these by
∑
i
K0i. The second

and the third diagrams shown in Figure 7b and 7c are the two meson exchange diagrams

between the projectile and the ith target nucleon and we will denote them by
∑
i
K

(1)
ii and

∑
i
K

(2)
ii . In a similar manner we will denote third and higher order diagrams involving

multi-meson exchange between the projectile and a single target nucleon by
∑
i
K

(m)
iii ,

∑
i
K

(m)
iiii etc. The box diagrams are labeled with m = 1 and the cross box diagrams are

labeled with m = 2. Next we notice that there exist irreducible multi-meson exchange

diagrams between the projectile and the target nucleus shown in Figures 7d, 7e and

7f. Since our aim is to write a multiple scattering theory similar to the non-relativistic

theory, we need to classify the diagrams in some way so that the kernel V can be indexed

by the nucleon index. For example, we can label the diagram in Figure 7d by
∑

ij Lij
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and Figure 7e and 7f by
∑

i,j 6=iM
(1)
ij and

∑
i,j 6=iM

(2)
ij etc. Now it is obvious that every

diagram can be written in the form
∑
i
Fi. From experience with the non-relativistic

theory, we know that at a later point, we would like do the resummation of the Born

series in terms of a free t-matrix and in the relativistic case, it might be a t-matrix

calculated from some One Boson Exchange (OBE) model. Thus we can separate K0i

from the rest of the terms in the kernel, as in

V =
A∑

i=0

V0i =
A∑

i=0

(K0i + Λ0i) (53)

with

Λ0i ≡
∑

i

∑

m

K
(m)
ii +

∑

i

∑

m

K
(m)
iii +

∑

i,j

Lij +
∑

i,j 6=i

∑

m

M
(m)
ij + · · · (54)

We have separated K0i from the rest of the terms, but we could have chosen to either

keep all terms or separate a particular subset of terms of interest. We will continue to

study the separation of the OBE term K0i in order to illustrate the technique.

Note that in V we have separated K0i from the other terms which we call Λ0i. The

K0i term is the OBE term and Kii, Kiii etc. are two-meson, three meson exchange

terms respectively. Depending on the phenomenological model, these contributions are

sometimes modeled as σ exchange and other heavy meson exchanges. The rest of the

terms in Λ0i are diagrams where there can be more than one target nucleon involved.

The cross meson exchange diagram shown in Figure 7d is where the projectile exchanges

two mesons with the target nucleus and in the intermediate state the target is in some

A-body excited state. In the non-relativistic theory there is no such thing as a cross

meson exchange, but in some crude way this type of diagram can be related to the

nuclear correlation function in the non-relativistic theory.

3.1. Relativistic optical potential

We now define the projector to the target ground state P and to the excited states

Q. Assume that the A-body target bound state problem can be solved in some way by

employing methods such as the QHD [18] model. The labeling scheme is exactly like the

non-relativistic case. Therefore we can write the Bethe-Salpeter equation as a coupled

equation and define the optical potential U as in the non-relativistic case,

T = U + UPG0PT (55)

U = V + V QG0QU (56)

Now we are in a position to make a multiple scattering series for the optical potential

U . We first write

U =
A∑

i=1

U0i =
A∑

i=1

(K0i + Λ0i) +
A∑

i=1

(K0i + Λ0i)QG0Q
A∑

i=j

U0j (57)

Here we see great flexibility in formulating a multiple scattering theory. The main aim in

formulating a multiple scattering theory for the optical potential is to rewrite the series
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written in terms of fundamental interactions into a series in terms of some scattering

amplitudes. We have the flexibility in the sense that when we rewrite the series in terms

of t-matrices, we can choose what we want for the t-matrix in the multiple scattering

series of the optical potential. We have mentioned above that the Λ0i part contains

diagrams with two or more meson exchange between the projectile and the target. At

this point we can choose to include or not to include Λ0i or some part of Λ0i in the

kernel of the t-matrix in the multiple scattering series of the optical potential. Since we

want to formulate an RMST optical potential, whose first order single scattering term

is given by the one boson exchange free t-matrix, we will neglect the Λ0i terms. If we

do not include the Λ0i terms in the t-matrix, then following (43), we can define

τ̂0i ≡ K0i +K0iQG0Qτ̂0i (58)

and we get a multiple scattering series for the optical potential as

U =
A∑

i=1

τ̂0i +
A∑

i=1

τ̂0iQG0Q
A∑

j 6=i

U0j +
A∑

i=1

f0i +
A∑

i=1

f0iQG0Q
A∑

j 6=i

U0j (59)

=
A∑

i=1

(τ̂0i + f0i) +
A∑

i=1

(τ̂0i + f0i)QG0Q
A∑

j 6=i

U0j (60)

where f0i is defined as

f0i ≡ Λ0i +K0iQG0Qf0i

= Λ0i +K0iQG0QΛ0i +K0iQG0QK0iQG0QΛ0i + · · ·

= Λ0i + τ̂0iQG0QΛ0i (61)

The series given by equation (59) is the relativistic multiple scattering series for the

optical potential in the Bethe-Salpeter formalism. Compare to the non-relativistic

Watson optical potential in equation (45). The first term in (59) is the single scattering

term. The second term will produce, after iteration, the double scattering term etc. We

have found that there are diagrams in which the projectile is interacting with two or

more target nucleons via meson exchange. These terms are represented by the terms

with f0i in the second line of equation (59). It is possible to include the Λ0i terms in the

kernel of the pseudo two-body operator τ̂ , but doing so will not give us any advantages

in approximating τ̂ by some suitable free two-body Bethe-Salpeter amplitude at a later

stage. We have to remember that the main aim in formulating a multiple scattering

series is to replace the infinite series written in terms of fundamental interactions (such

as OBE) by a series in some two-body amplitude (such as free Bethe-Salpeter t-matrix)

which itself contains the fundamental interaction to infinite order.

The multiple scattering series given by equation (59) is formulated in four

dimensions and we have not yet made any approximation nor dimensional reduction

of any of the equations involved. We have separated off the OBE term in order to

illustrate how one might go about isolating particular terms of interest. However this

separation does not involve any approximation because equations (58) - (61) remain

equivalent to the Bethe-Salpeter equation (52) together will all terms contained in (53).
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One could have separated off other terms in a similar manner. Or one might not separate

off anything and keep the entire series, in which case none of the f0i terms would be

present, and the τ̂0i term in (58) would instead read

τ̂0i ≡ V0i + V0iQG0Qτ̂0i (62)

just as in the non-relativistic case (43). However, again we continue to isolate the OBE

terms in order to illustrate the technique. It is of interest to know the size of contribution

of the crossed box diagram to the scattering amplitude in the Bethe-Salpeter equation.

Although no one has done this within the context of the Bethe-Salpeter equation,

Fleicher and Tjon [19] have analysed the relative sizes of the box diagram and the

crossed box diagram for on-shell k-matrix-elements at 100 MeV. They found that the

on-shell matrix elements for the crossed box are about 4 to 20 times weaker than their

direct box counterparts. They also noted that there exist some partial cancellations

between the box and the crossed box diagrams.

3.2. Relativistic impulse approximation

Just as in the non-relativistic case, we now have a multiple scattering series for the

optical potential. The series is written in terms of a pseudo two-body amplitude τ̂0i
which has the effects of many-body interaction in the kernel and propagator. Because

solving τ̂0i involves all possible excited states of the target, it is probably as hard as

solving the original problem and for any practical calculations we need to approximate

this by the free two-body amplitude. Before we make any approximation, we first

examine the content of this single scattering approximation to the optical potential.

The single scattering optical potential is obtained by folding the τ̂ amplitude with the

target ground state, i.e. 〈φ0|
∑
i
τ̂0i|φ0〉 and the equation for τ̂0i is shown diagrammatically

in Figure 8. As in the non-relativistic case we do not want to calculate τ̂0i but want

to replace it in the multiple scattering series with a free two-body operator. The free

two-body t matrix is defined the same way as (47), namely

t̂ free0i ≡ K̂0i + K̂0iĝt̂
free
0i (63)

where g is the free two body propagator, and the relation between t̂ free and τ̂ is therefore

τ̂0i = t̂ free0i + t̂ free0i (QG0Q− ĝ)τ̂0i (64)

analogous to (48).

Note that we are introducing an approximation here because we are assuming that

t̂ free0i involves only the OBE term K0i shown in Figure 7a. One might argue that this

should also include the cross box term in Figure 7d, in which case one would repeat

the above calculations, but separate off both the box (OBE) and cross box. All the

equations above would then have K0i being defined as box (OBE) plus cross box, and

the cross box term would be removed from Λ0i. Nevertheless, for the sake of clarity, we

continue with separating only the OBE term.

Now we compare 〈φ0|τ̂ |φ0〉 and 〈φ0|t̂
free|φ0〉. Of course the difference between τ̂0i

and t̂ free0i is the nuclear medium modification of the interaction. But for intermediate and
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i i i i

K0iK0i0i 0i
^ ^

Figure 8. The equation for the pseudo two-body operator τ̂0i which is the relativistic

analogue of the Watson τ0i operator in the non-relativistic theory.

high energies where the impulse approximation is good, the difference is not significant.

One contribution arising from medium modification is the shift in the energy of the terms

in the kernel due to the motion of the A − 1 cluster. The second difference is in the

iterated intermediate states where 〈φ0|τ̂ |φ0〉 includes excited target intermediate states

because of the propagator QG0Q in τ̂ . In order to see what is involved in approximating

〈φ0|τ̂ |φ0〉 by 〈φ0|t̂
free|φ0〉 we rewrite the optical potential in terms of t̂ free,

U =
A∑

i=1

t̂ free0i +
A∑

i=1

t̂ free0i (QG0Q− ĝ)t̂ free0i + · · ·

+
A∑

i=1

t̂ free0i QG0Q
A∑

j 6=i

t̂ free0j + · · ·

+
A∑

i=1

f0i +
A∑

i=1

f0iQG0Q
A∑

j 6=i

t̂ free0j + · · · (65)

Compare to the non-relativistic expression (51). In equation (65) the first term in the

series
A∑
i=1

t̂ free0i when sandwiched between the target ground states will give the first-

order single scattering optical potential in the impulse approximation. The second term

in the series is the propagator correction term. In the non-relativistic theories, the

name Impulse Approximation comes from the fact that in medium and higher energies

〈φ0|t0iQG0Qt0i|φ0〉 can be approximated well by 〈φ0|t0igt0i|φ0〉 where g is the free two-

body propagator. Obviously this will be a good approximation if 〈φ0|t0iQG0Qt0i|φ0〉 is

dominated by single nucleon knockout terms shown in Figure 9.

i

t 0i
t 0i

Figure 9. For medium energies one nucleon knockout terms such as this dominate

and the difference between τ0iQG0Qτ0i and t0iQG0Qt0i is small.

The second line in the above series (65) are the double, triple, etc. scattering

terms. Non-relativistically the first term plus the double scattering term constitute the
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second-order optical potential in the impulse approximation.

Diagrams 7e , 7f and other similar diagrams can be understood as three-body and

multi-nucleon force terms in the nonrelativistic theory. Although it is possible to include

them formerly in our two-body t-matrix, in order to see the OBE contribution and these

multi-nucleon force terms separately, we lump all these non-OBE contributions in the

f0i terms in equation (59) and equation (65). We will leave the labor of estimating the

sizes and effects of these terms to future work. In any case, in order to obtain an RMST

whose leading term is given by an OBE t-matrix, we do not include them in the kernel

of τ̂0i.

3.3. 3-dimensional reduction

The Bethe-Salpeter equation (52) can be reduced from 4 to 3 dimensions by writing it

as a set of coupled equations

T = K +KG̃0T (66)

K = V + V (G0 − G̃0)K (67)

where G̃0 is a 3-dimensional propagator, which may be written in the general form [20]

G̃0 = −2πi
∫

ds′

s− s′ + iη
f(s′, s) δ+(A) δ+(B) (68)

where s is the square of the total 4-momentum and f(s′, s) is a function with the

requirement that f(s, s) = 1. A and B are arguments of the delta function which depend

on 4-momentum [20]. These δ functions are such that they fix a prescription for first

component of 4-momentum, k0, and thereby kill a
∫
dk0 integral reducing the problem

from 4 to 3-dimensions. This procedure is called a 3-dimensional reduction of the Bethe-

Salpeter equation, resulting in the 3-dimensional equation (66). There are infinitely

many three-dimensional reductions possible [21]. The reduction is done by using some

delta functions and the equations obtained by this method are commonly known as

quasi-potential equations. Besides the quasi-potential equations, there exist other

covariant three-dimensional equations designed to obey certain principles. For example,

Phillips and Wallace have developed an equation which satisfies gauge invariance to

any desired order in the kernel [22]. Pascalutsa and Tjon have designed an equation

satisfying charge conjugation [23]. More details can be found in reference [20].

So far the formulation of our RMST is entirely in four dimensions and no

dimensional reduction has been made. In the four-dimensional formalism, the

propagator for the elastic scattering equation (55), is PG0P where G0 is the Bethe-

Salpeter propagator for the nucleon-nucleus system and PG0P tells us that the target is

propagating in its ground state. Apparently the nucleon-nucleus scattering calculation

has never been done in full four dimensions. In actual calculations, for proton-nucleus

scattering, a fixed energy Dirac equation is used with scalar and vector potentials

calculated from the tρ approximation of the optical potential. Thus one has made

the assumption that the interaction is instantaneous. This means the target is infinitely
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heavy and the projectile moves in the instantaneous potential of the target nucleus

because a fixed energy Dirac equation is a three-dimensional one-body equation. That

means in using the Dirac equation, one has made two approximations. First, the Bethe-

Salpeter propagator of the nucleon-nucleus system is replaced by some three-dimensional

two-body propagator. Second, a proper one-body limit of the chosen three-dimensional

two-body propagator is the Dirac propagator. To see what is involved, rewrite (55) and

(56) as the coupled integral equations,

T = Ũ + ŨP G̃0PT (69)

Ũ = U + U(PG0P − PG̃0P )Ũ (70)

Obviously the difficulty level in solving for Ũ is the same as solving the original 4-

dimensional problem. In order to obtain a 3-dimensional elastic scattering equation, we

choose a 3-dimensional propagator PG̃0P . All that is required to maintain unitarity

is that PG̃0P has the same elastic cut as PG0P . Of course in picking G̃0 we must

specify how the nucleon-nucleus relative energy variable is going to be handled so that

equation (69) will be a three-dimensional equation. It should be clear that the relative

energy prescription is entirely contained in G̃0 and PG̃0P just tells us that the target

is propagating in its ground state. Once the 3-dimensional propagator G̃0 is chosen,

we have to use the same prescription for fixing the relative energy in evaluating U . In

the nucleon-nucleus case, U =
∑
i
t̂ free0i contains t̂ free whose propagator ĝ is the Bethe-

Salpeter propagator of the projectile and a target nucleon. An important conclusion of

the present paper, is that to be consistent one must use the same prescription in fixing

the relative energy in G0 and ĝ. For example, in nucleon-nucleus scattering, if we are

going to use a nucleon-nucleon t-matrix using the Blackenbeclar-Sugar propagator, the

elastic scattering equation should also be the Blackenbeclar-Sugar equation.

The final elastic scattering equation need not be a Dirac equation. Making it a

Dirac equation involves the assumption that the target nucleus is infinitely heavy and

that the proper one-body limit of the equation corresponding to the three-dimensional

equation with the propagator PG̃0P is the Dirac equation. In reality no nucleus is

infinitely heavy although it can be a good approximation for many heavy nuclei. We

note also that the correct one-body limit can be easily incorporated in quasi-potential

(three-dimensional) or other types of two-body equations [23].

In the case of meson projectiles, there are three different masses involved; the mass

of the meson, the mass of the nucleon and the mass of the nucleus. Because of the mass

difference between the meson and the nucleon, it is not suitable to use 3-dimensional

quasi-potential equations which put both particles equally on mass-shell and it is also

not entirely justifiable to put the nucleon on-mass-shell since the nucleon is not infinitely

massive. In our opinion, the most suitable 3-dimensional equation to use for the meson-

nucleon amplitude is the Proportionally Off-Mass-Shell equation [20]. The propagator

of this equation can be easily modified for boson-fermion or fermion-fermion cases so

it can be used for both the nucleon-nucleon and the nucleon-nucleus propagators. The

major advantage of this equation over other quasi-potential equations is that it adjusts
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the off-shellness of the particles according to their masses. When one of the particles

is infinitely massive, it reduces to a one-body equation and if the masses are equal, it

treats the particles symmetrically and it reduces to an equation known as the Todorov

equation [24]. Obviously, this propagator can be used for both mesonic and nucleonic

projectiles and also for the projectile-taget propagation. It also gives us the added

advantage that it automatically adjusts itself to the masses involved because of the

physically meaningful prescription for fixing the relative energy. It would be interesting

to see the use of this proportionally off-mass-shell equation in nucleon-nucleus scattering

in the future.

4. Conclusions

We have formulated a relativisitic multiple scattering series for the optical potential in

the the case of nucleon-nucleus scattering. As in reference [8] we started from the fact

that the nucleon-nucleus scattering amplitude is given by an infinite series of meson

exchange diagrams between the projectile and the target. This infinite series can be

written as an integral equation (Bethe-Salpeter equation) if we include all projectile-

target irreducible diagrams in the kernel. In contrast to reference [8] we do not consider

the cancellation of the box and the crossed box diagrams, but derived a multiple

scattering series without making any dimensional reduction. In the full 4-dimensional

formalism, neither the projectile nor the target is put on-mass-shell and we do not

have the problem of spurious singularities arising from putting an excited target on-

mass-shell. As expected, the RMST for the optical potential is very similar to the

non-relativistic counterpart. The only difference is the appearence of some extra terms

arising from diagrams with the projectile interacting with two or more nucleons via

meson exchange. We show that just like the non-relativistic case, the single scattering

first-order impulse approximation optical potential operator is given by the free two-

body Bethe-Salpeter t-matrix summed over the target nucleon index.

In this paper we discussed how to formulate a relativistic multiple scattering theory

for the optical potential in projectile-nucleus scattering. We did not discuss about target

recoil or the center of mass motion of the A-body target. In practical calculations these

things have to be taken into account. One way to incorporate the A-body center of mass

motion is to use the Moller frame transformation factor [25]. Mutiplying the nucleon-

nucleon t-matrix (calculated in the nucleon-nucleon center of mass frame) by this factor

will produce the t-matrix to be used appropriate for the nucleon-nucleus center of mass

frame. In the optimal factorization of the optical potential, recoil of the struck nucleon

can be taken into account by including a −(p + p′)/2A term in the struck nucleon

momenta where p and p′ are the initial and final momentum in the nucleon-nucleus

center of mass frame and A is the mass number of the target nucleus [26]. An in depth

analysis of the effects of including boost, recoil, Moller factor and Wigner rotation in

proton-nucleus scattering can be found in a study by Tjon and Wallace [26].

We have discussed that there are many possible ways to organize the relativistic
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multiple scattering theory. Indeed, unlike the non-relativistic case, the relativistic case

already has a kernel that includes multiple scattering at the level of meson exchange.

One could in principle obtain a multiple scattering series which has the exact same form

as the non-relativistic case (Eq. 45) by including these f0i diagrams in the definition

of τ̂0i. This shows that one can obtain a relativistic multiple scattering series for the

optical potential in the mold of the non-relativistic theory. As far as we are aware,

all relativistic nucleon-nucleus scattering calculations that use a two-body t-matrix

calculated from a two-body relativistic equation have used OBE models. Therefore

we keep the OBE contribution and contributions from the many-body force diagrams

separate so that we can see what is left out in these calculations. In this paper we

try to stay close to the non-relativisitc Watson formalism. In the literature on the

non-relativistic multiple scattering theory there are other ways to organize the multiple

scattering series [27, 28, 29]. Developing such organizations are beyond the scope of this

work.

Throughout the paper, we have illustrated our technique by separating off the

OBE term shown in Figure 7a. We have mentioned several times that this particular

separation is not necessary, and we have discussed how to choose alternatives. The

use of the OBE term alone might be a popular choice and our discussion shows what

approximations are involved in making such a choice and what terms are left out.

Next we rewrote the elastic scattering equation into coupled integral equations by

introducing an auxilary interaction Ũ and a propagator PG̃0P . This propagator contains

a prescription for fixing the relative energy variable and must also have the same elastic

cut as PG0P so that it will obey unitarity. The final elastic scattering equation is

T = Ũ + ŨP G̃0PT which is a three-dimensional covariant equation. The 3-dimensional

optical potential Ũ is obtained from U by using the same relative energy prescription

as in PG̃0P . This requires that the free two-body t-matrix in the optical potential

should be calculated with the same relative energy prescription. To give a concrete

example, if PG̃0P corresponds to Blackenbeclar-Sugar propagator, then the first order

impulse approximation optical optential is
∑
i
t̂ freei where t̂ freei must be calculated from

the Blackenbeclar-Sugar equation. An important conclusion of this paper is that the

propagators of the elastic scattering equation and the free two-body t-matrix must be

consistent. Next, we have looked at what approximation is involved in using a fixed

energy Dirac equation. Obviously, from the discussion above the final projectile-target

elastic scattering equation does not have to be a Dirac equation. Since the fixed energy

Dirac equation is a one-body equation, the use of it implies that the target is infinitely

heavy. The more subtle point involved here is that, in doing so, we are also assuming that

the correct one-body limit of the elastic scattering two-body equation with propagator

PG̃0P is a Dirac equation. The effects of other propagators other than Dirac should be

tested in future calculations, although we believe that for heavy target nuclei such as
40Ca or 208Pb, Dirac RIA would be an excellent approximation, Finally, we argued that

it is physically more meaningful and aesthetically pleasing to use the Proportionally

Off-Mass-Shell propagator [20] for projectile-nucleon and nucleon-nucleus propagators
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regardless of whether the projectile is a meson or a nucleon.
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