24 research outputs found

    Detection of endogenous biomolecules in Barrett's esophagus by Fourier transform infrared spectroscopy

    No full text
    Fourier transform infrared (FTIR) spectroscopy provides a unique molecular fingerprint of tissue from endogenous sources of light absorption; however, specific molecular components of the overall FTIR signature of precancer have not been characterized. In attenuated total reflectance mode, infrared light penetrates only a few microns of the tissue surface, and the influence of water on the spectra can be minimized, allowing for the analyses of the molecular composition of tissues. Here, spectra were collected from 98 excised specimens of the distal esophagus, including 38 squamous, 38 intestinal metaplasia (Barrett's), and 22 gastric, obtained endoscopically from 32 patients. We show that DNA, protein, glycogen, and glycoprotein comprise the principal sources of infrared absorption in the 950- to 1,800-cm−1 regime. The concentrations of these biomolecules can be quantified by using a partial least-squares fit and used to classify disease states with high sensitivity, specificity, and accuracy. Moreover, use of FTIR to detect premalignant (dysplastic) mucosa results in a sensitivity, specificity, positive predictive value, and total accuracy of 92%, 80%, 92%, and 89%, respectively, and leads to a better interobserver agreement between two gastrointestinal pathologists for dysplasia (κ = 0.72) versus histology alone (κ = 0.52). Here, we demonstrate that the concentration of specific biomolecules can be determined from the FTIR spectra collected in attenuated total reflectance mode and can be used for predicting the underlying histopathology, which will contribute to the early detection and rapid staging of many diseases

    Extracellular superoxide dismutase is important for hippocampal neurogenesis and preservation of cognitive functions after irradiation

    No full text
    Cranial irradiation is widely used in cancer therapy, but it often causes cognitive defects in cancer survivors. Oxidative stress is considered a major cause of tissue injury from irradiation. However, in an earlier study mice deficient in the antioxidant enzyme extracellular superoxide dismutase (EC-SOD KO) showed reduced sensitivity to radiation-induced defects in hippocampal functions. To further dissect the role of EC-SOD in neurogenesis and in response to irradiation, we generated a bigenic EC-SOD mouse model (OE mice) that expressed high levels of EC-SOD in mature neurons in an otherwise EC-SOD–deficient environment. EC-SOD deficiency was associated with reduced progenitor cell proliferation in the subgranular zone of dentate gyrus in KO and OE mice. However, high levels of EC-SOD in the granule cell layer supported normal maturation of newborn neurons in OE mice. Following irradiation, wild-type mice showed reduced hippocampal neurogenesis, reduced dendritic spine densities, and defects in cognitive functions. OE and KO mice, on the other hand, were largely unaffected, and the mice performed normally in neurocognitive tests. Although the resulting hippocampal-related functions were similar in OE and KO mice following cranial irradiation, molecular analyses suggested that they may be governed by different mechanisms: whereas neurotrophic factors may influence radiation responses in OE mice, dendritic maintenance may be important in the KO environment. Taken together, our data suggest that EC-SOD plays an important role in all stages of hippocampal neurogenesis and its associated cognitive functions, and that high-level EC-SOD may provide protection against irradiation-related defects in hippocampal functions
    corecore