8 research outputs found

    Microevolution of Dengue Viruses Circulating among Primary School Children in Kamphaeng Phet, Thailandâ–¿

    No full text
    To determine the extent and structure of genetic variation in dengue viruses (DENV) on a restricted spatial and temporal scale, we sequenced the E (envelope) genes of DENV-1, -2, and -3 isolates collected in 2001 from children enrolled in a prospective school-based study in Kamphaeng Phet, Thailand, and diagnosed with dengue disease. Our analysis revealed substantial viral genetic variation in both time and space, with multiple viral lineages circulating within individual schools, suggesting the frequent gene flow of DENV into this microenvironment. More-detailed analyses of DENV-2 samples revealed strong clustering of viral isolates within individual schools and evidence of more-frequent viral gene flow among schools closely related in space. Conversely, we observed little evolutionary change in those viral isolates sampled over multiple time points within individual schools, indicating a low rate of mutation fixation. These results suggest that frequent viral migration into Kamphaeng Phet, coupled with population (school) subdivision, shapes the genetic diversity of DENV on a local scale, more so than in situ evolution within school catchment areas

    Comparative Analysis of Full-Length Genomic Sequences of 10 Dengue Serotype 1 Viruses Associated with Different Genotypes, Epidemics, and Disease Severity Isolated in Thailand over 22 Years

    No full text
    Comparative sequence analysis was performed on the full-length genomic sequences of 10 representative dengue virus serotype 1 (DENV-1) strains sampled from patients at Children's Hospital, Bangkok, Thailand over a 22-year period, which represented different epidemics, disease severity, and sampling time. The results showed remarkable inter-genotypic variation between predominant and non-predominant genotypes and genotype-specific amino acids and nucleotides throughout the entire viral genome except for the 5′-non-translated region. The frequency of intra-genotypic variation was correlated with dengue transmission rate and sampling time. The 5′-non-translated region of all 10 viruses was highly conserved for predominant and non-predominant genotypes and NS2B was the most conserved protein. Some intra-genotypic substitutions of amino acids and nucleotides in predominant genotype strains were fixed in the viral genome since 1994, which indicated that the evolution of predominant genotype strains in situ over time might contribute to increased virus fitness important for sustaining dengue epidemics in Thailand
    corecore