3,506 research outputs found

    Validation of EDQNM for subgrid and supergrid models

    Get PDF
    From preliminary calculations it was concluded that the two-point Eddy Damping Quasi-Normal Markovian (EDQNM) closure accurately describes the behavior of second order moments. This closure can be applied as subgrid and supergrid models for Large Eddy Simulations at higher Reynolds numbers. In the case of homogeneous anisotropic turbulence, when the nonlinear terms are introduced the calculation becomes quite onerous but is still considerably less expensive than the calculation of a DS. The major merit of two-point closure models is that they can be easily applied to flows at Reynolds numbers that are unreachable by a DS. Work is in progress to derive expressions for the nonlinear terms that give good global conservation properties

    Turbulence and secondary motions in square duct flow

    Full text link
    We study turbulent flows in pressure-driven ducts with square cross-section through direct numerical simulation in a wide enough range of Reynolds number to reach flow conditions which are representative of fully developed turbulence. Numerical simulations are carried out over extremely long integration times to get adequate convergence of the flow statistics, and specifically high-fidelity representation of the secondary motions which arise. The intensity of the latter is found to be in the order of 1-2% of the bulk velocity, and unaffected by Reynolds number variations. The smallness of the mean convection terms in the streamwise vorticity equation points to a simple characterization of the secondary flows, which in the asymptotic high-Re regime are found to be approximated with good accuracy by eigenfunctions of the Laplace operator. Despite their effect of redistributing the wall shear stress along the duct perimeter, we find that secondary motions do not have large influence on the mean velocity field, which can be characterized with good accuracy as that resulting from the concurrent effect of four independent flat walls, each controlling a quarter of the flow domain. As a consequence, we find that parametrizations based on the hydraulic diameter concept, and modifications thereof, are successful in predicting the duct friction coefficient

    Effects of non-unity Lewis numbers in diffusion Flames

    Get PDF
    The purpose of this work is to carry out direct numerícal simulations of diffusion controlled combustión with non-unity Lewis numbers for the reactants and producís, thus accounting for the düferential diífusion effects of the temperature and concentration fields. We use a formulation (Liñán (1991a)) based on combining the conservation equations in a way to elimínate the reaction terms similar to the method used by Burke and Schumann (1928) for unity Lewis numbers. We present calculations for an axisymmetric fuel jet and for a planar, time evolving mixing layer, leaving out the effects of thermal expansión and variations of the transport coefficients due to the heat reisase. Our results show that the front of the fíame sbifts toward the fuel or oxygen sides owing to the effect of the düferential diífusion and that the location of máximum temperature may not coincide with the fíame. The dependence of the distríbution of the reaction products on their Lewis number has been investigated

    Drag reduction in turbulent MHD pipe flows

    Get PDF
    This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative

    Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes

    Get PDF
    Finite-difference second-order accurate direct simulation of a turbulent pipe has been used to investigate how the turbulence production and dissipation change when a solid body rotation is applied. It is shown that when the helicity increases, the dissipation is reduced. It is asserted that to have a drag reduction the external action should be such as to disrupt the symmetry of right- and left-handed helical structures. In this study the Navier-Stokes equations in rotational form permit the turbulent energy production to be split into a part related to the energy cascade from large to small scales and into a part related to the convection by large scales. The full simulation data have shown the latter is greater than the former in the wall region and that, on the contrary, these two terms balance each other in the central region. From the pdf of the former, it has been shown how the vortical structures are changed in the wall region by the background radiation and how they are related to the changes in the energy production

    A finite-difference scheme for three-dimensional incompressible flows in spherical coordinates

    Get PDF
    In this study we have developed a flexible and efficient numerical scheme for the simulation of three-dimensional incompressible flows in spherical coordinates. The main idea, inspired by a similar strategy as (Verzicco, R., Orlandi, P., 1996, A Finite-Difference Scheme for Three-Dimensional Incompressible Flows in Cylindrical Coordinates) for cylindrical coordinates, consists of a change of variables combined with a discretization on a staggered mesh and the special treatment of few discrete terms that remove the singularities of the Navier-Stokes equations at the sphere centre and along the polar axis. This new method alleviates also the time step restrictions introduced by the discretization around the polar axis while the sphere centre still yields strong limitations, although only in very unfavourable flow configurations. The scheme is second-order accurate in space and is verified and validated by computing numerical examples that are compared with similar results produced by other codes or available from the literature. The method can cope with flows evolving in the whole sphere, in a spherical shell and in a sector without any change and, thanks to the flexibility of finite-differences, it can employ generic mesh stretching (in two of the three directions) and complex boundary conditions

    A variable delay integrated receiver for differential phase-shift keying optical transmission systems

    Get PDF
    An integrated variable delay receiver for DPSK optical transmission systems is presented. The device is realized in silicon-on-insulator technology and can be used to detect DPSK signals at any bit-rates between 10 and 15 Gbit/s

    Flow over the Mid Adriatic Pit

    Get PDF
    The influence of the Mid Adriatic Pit (MAP) on the general circulation of the Adriatic is explored through numerical simulations. The numerical code used is the DieCAST model specifically modified for application to the Adriatic Sea. A ten-year simulation is performed and the ability of the model to capture important features of the Adriatic circulation is demonstrated. A series of numerical experiments on the importance of the MAP on the general circulation is performed. It is demonstrated that the current over the northern flank of the MAP, which flows from the Croatian toward the Italian coast, is primarily a topographic current and that such a current would reverse direction if the gradient of the bathymetry were reversed

    Flow over the Mid Adriatic Pit

    Get PDF
    The influence of the Mid Adriatic Pit (MAP) on the general circulation of the Adriatic is explored through numerical simulations. The numerical code used is the DieCAST model specifically modified for application to the Adriatic Sea. A ten-year simulation is performed and the ability of the model to capture important features of the Adriatic circulation is demonstrated. A series of numerical experiments on the importance of the MAP on the general circulation is performed. It is demonstrated that the current over the northern flank of the MAP, which flows from the Croatian toward the Italian coast, is primarily a topographic current and that such a current would reverse direction if the gradient of the bathymetry were reversed
    corecore