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The purpose of this work is to carry out direct numerícal simulations of diffusion 
controlled combustión with non-unity Lewis numbers for the reactants and prod­
ucís, thus accounting for the düferential diífusion effects of the temperature and 
concentration fields. We use a formulation (Liñán (1991a)) based on combining 
the conservation equations in a way to elimínate the reaction terms similar to the 
method used by Burke and Schumann (1928) for unity Lewis numbers. We present 
calculations for an axisymmetric fuel jet and for a planar, time evolving mixing 
layer, leaving out the effects of thermal expansión and variations of the transport 
coefficients due to the heat reisase. Our results show that the front of the fíame 
sbifts toward the fuel or oxygen sides owing to the effect of the düferential diífusion 
and that the location of máximum temperature may not coincide with the fíame. 
The dependence of the distríbution of the reaction products on their Lewis number 
has been investigated. 

1. Introduction 

In many practical combustión systems reactions between fuel and oxidizer take 
place in thin reaction layers where the reactants meet at stoichiometric proportions, 
arriving by diffusion from opposite sides of the fíame. In these systems the rate of 
burning is controlled by diffusion and not by the kinetics of the reaction, when the 
reaction is sufficiently fast. The turbulent character of the flow is an unavoidable 
requirement when we want to obtain large burning rates. The distorted and strongly 
corrugated form of the ñames, when the flow is turbulent or even transitional, makes 
direct numerical simulation (DNS) of thes¿ flows very difficult. 

The problem simplifies if we can assume that the Lewis numbers of the species, i.e. 
the ratios of their thermal to their mass diffusivities, are equal to unity. In this case 
we find combinations of species concentrations and temperature that are conserved 
in the reaction and are transported and diffuse like inert species. The assumptions 
of equal diffusivities and infinitely fast reaction have, therefore, been widely used 
for the descríption of diffusion controlled combustión after the pioneering work of 
Burke and Schumann (1928). See, for exampie, Delhaye el al. (1994) for a recent 
two-dimensional simulation of a spatially evolving mixing layer. 
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The purpose of the work described here has been to show how DNS of diffusion 
controlled combustión can be carried out for transitional flows with non-unity Lewis 
numbers using a generalization, given in Liñán (1991a) and Liñán and Williams 
(1993), of the Burke-Shumann procedure. Preliminary calculations have been made 
for an axjsymmetric fuel jet in a stagnant oxidizer atmosphere and for a tempo-
rally evolving plañe mixing layer, leaving aside in both cases the ejfect of thermal 
expansión. The results show some of the effects of the Lewis numbers on the fíame 
location and on the temperatura and product conccntration. 

Experimental work on reacting shear layers with nearly constant gas density 
has been performed by Mungal and Dimotakis (1984), Mungal, Hermanson and 
Dimotakis (1985), Masutani and Bowman (1986), and Mungal and Frieler (1988). 
Riley, Metcalfe and Orszag (1986) carried out three-dimensional simulations of a 
temporally evolving mixing layer with a single-step reaction whose rate does noi 
depend on temperature, and much numerical woik has been done subsequently 
on dirferent aspects of reacting shear flows (see, for example, the Proceedings of 
previous Summer Programs). Models of scalar mixing and chemical reactions in 
turbulent mixing layers and jets have been proposed by Marble and Broadwell 
(1977), Broadwell and Breidenthal (1982), and Broadwell and Mungal (1991). See 
abo the review by Bilger (1989) 

2. Formulation 

We assume that an infi&itely fast reaction, with the overall stoichiometry 

F + r02-+(l+r)P + (q) (1) 

is taking place in the thin reaction zone so that a mass of oxygen, r, is consumed 
and a mass of products, (1 + r), is generated together with a thermal energy per 
unit mass of fuel consumption, q. 

UDT, DT/LF, DT/LO, &nd Dr/Lp are the thermal and mass diffusivities of the 
fuel, oxygen, and products (written in tenas of the corresponding Lewis numbers), 
we can form combinations of the conservation equations for the species and the 
energy where the reaction terms are eliminated. Thus, if YF and Yo are the mass 
fractions of the fuel and of the oxygen, we can derive the conservation equation 

P§¡(rYF -Yo)-V- PDTV(rYF/LF - Yo/Lo) = 0, (2) 

where the reaction term is absent. This equation can be written in the form 

Lmp~Z - V • (pDTVZ) == 0, (3) 

which uses the traditional mixture fraction 

Z = (SYF-Yo + l)/(l + S), (4a) 
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based on the Schv&b-Zeldovich coupling function appearing in the material deriva-
tive term of Eq. (2) and the modified mixture ¿xaction Z, defined by 

Z = (SYF-Y0 + 1)/(1 + S), (46) 

based on the coupling function appearing in the diffusion term of Eq. (2), where 
the mean Lewis number is defined as Lm — Lo(l + 5 ) / ( l + S). In these relations 
YF = YF/YFO, YO = Yo/Yoo are the mass fractions scaled by their free-stream 
valúes, and 5 = rYFo/Yoo and 5 = SLO/LF are air/fuel mass stoichiometric ratios. 
Notice that the combination (TYF/LF — Yo I Lo) and its gradient, and therefore Z 
and grad Z, are continuous in the thin fíame, where we have a reaction-diffusion 
balance. The gradient of Z, on the other hand, has a jump in the reaction sheet. 

In a similar fashion to the conservation equation for the mixture fraction, we can 
write a conservation equation 

pLpiñ " v' ^DTVY)=(Lp - wc^f+(ip - Lo)pi5r (5) 

for the 'potential' product mass fraction 

y = ÍV + y 0 + l±l^) (6) 
1 + r Lp YFO 

and the conservation equation 

^ " v • W***) = í1" L^P^W + (1 ~ Lo)p^W (7) 

for the reduced total enthalpy 

H = YF + Yo+cp(T-To)lF^-- (8) 
qJFo 

Here we have assumed a constant specific heat cv and used the low Mach number ap-
proximation for the energy equation. Eqs. (3), (5)m and (7) must be complemented 
by the equations of state, continuity and momentum conservation, in addition to 
the Burke-Schumann equilibrium condition: Y? — 0 on the air side of the flame and 
Yo = 0 on the fuel side. Namely, by the relations 

YF = 0, 1 - Yo = Z/Zs = Z/Zs (9a) 

where Z < Zs = 1/(1 + 5) or Z < Zs = 1/(1 + S), and 

Yo=0, YF = (Z-ZS)/(1-ZS) = (Z-ZS)/(1-ZS) (96) 
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where Z > Zs- The fíame lies on the stoichiometric mixture fraction level surface 
where Z = Zs- Thus Z is given by Eq. (3) complemented by the piecewise linear 
relation Z(Z) given by Eqs. (9). If LF = Lo then Z = Z. 

The temperature and product concentrations are given, using Eqs. (9), by H and 
Z, and Y and Z, according to Eqs. (6) and (8). H and Y are given by eqs. (5) and 
(7), where the differential diffusion effects, represented by the tenas in the right 
hand side of the equations, can be written in terms of Z. 

The boundary conditions to be used include Z = H — 1 = Y — 1 = 0 on the 
air feed stream and Z — 1 = Hj- Hp = Y — 1 = 0 on the fuel feed strearc, 
with HF = 1 + CJ>(TF — To)(l + S)/qYFo in terms of the fuel and air feed stream 
temperaturas TF and To-

We have carried out calculations of the flow fíeld without taking into account 
the effects of variable density or variable transport coefficients associated with the 
exothermicity of the reaction. The errphasis here has been placed on non-unity 
Lewis number effects, while the companion paper by Higuera and Moser (this issue) 
deals with the effects of thermal expansión and variable diffusivity for the equi-
diffusional case. 

The mixture fraction field, as well as the concentration fields of the fuel and oxy-
gen, given in terms of Z by relations (9a) and (9b), are dependent on the parameters 
LF, LO and S = SLF/LO- In all of our calculations we have used the reasonable 
assumption Lo = 1 and have considered TF — To and some representative valúes 
of LF and of the mass stoichiometric ratio S = TYFO/YOO-

Eqs. (5) and (7), giving the reduced total enthalpy S and the potential product 
concentration Y, are ¡dentical if the Lewis number Lp of the product is 1. If the 
initial temperature of the fuel is equal to that of the ambient air, then, the boundary 
conditions are also identical and the valúes of cp(T—To)/q and Yp/(l+r) are equal. 

We have determined the product concentration for valúes ofLpj^l. The product 
concentration has been scaled with the constant valué, YFQ(1 + r ) / ( l 4- S), of the 
product mass fraction along the flame sheet when all the Lewis numbers are equal 
to the unity; in this equi-diffusional case, the flame temperature is constant and 
equal to the adiabatic flame temperature T, = To + qYpa/[cp(l •+ S)]. 

Due to the so called differential diffusion effects (effects of non-unity Lewis num­
bers) we may expect the flame temperature to vary in the raage between Te and 
Ti — To + qYFo/[cpLF(l + S)]', the last valué corresponding to cases where diffu­
sion is dominant over convection and local accumulation. Similarly, the product 
mass fraction along the flame sheet should vary between YFQ{1 + r ) / ( l + S) and 
Ypa(l + r)(Lp/Lp)/(l + S). Notice, however, that the total product generation in 
the flame will not be dependent on the diffusivity of the product, but on S and LF, 
because in ihese constant density calculations the product generation is controlled 
by the diffusion of the reactants to the fiame sheet. 

3. Simulations of jet diffusion flamea 

Before performing the simulation of a space developing axisymmetric jet, the 
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a) b) 

FIGURE 1. Contour plots of the stoicbiometric mixture fraction Zs = 0.272 
(Lo = 0.8, LF = 1.2, and r = 5) for the Marble problem: a) Pe = 5000 lines are 
superimposed for t = 4, i = 8, t = 12, t = 16, and i — 20, b) solutions at t = 20 
for Pe = 100, Pe = 500, Pe = 1000, and Pe = 5000. Pr = 0.72 in all cases. The 
crossing of lines indicates the center of the vortex. 

númenes related to the solution of Eqs. (3) and (5) have been checked by investi-
g&ting whether the numerical solution reproduces the self-similar behavior of the 
mixture fraction Z when it is advected and difiused by a point vortex of circulation 
r (Marble problem). This problem has been theoretically studied by Liñán (1991b) 
for non-unity Lewis numbers. Since in the numerical simulation we could not use 
a point vortex, we considered a Rankine vortex (i.e. a vortex with u = const for 
r < a and u> = 0 for r > a) of core size a = 0.1 and unity circulation. It is clear 
that with this approximation the self-similar solution does not hold for i = 0 + but 
only after a certain transient. This simulation was necessary to investígate whether 
our fínite diíference scheme could handle different variables in the ríght-hand and 
the left-hand sides of Eq. (3) (Z and Z respectively) since due to stability reasons 
an implicit discretization of the ríght-hand side of Eq. (3) has been used. Numerical 
dífficulties could arise from the fact that in the reaction sheet there is ajump in the 
graáZ. In our numerical resolution a variable \ was introduced (Z = Z¡\) with x 
given by the comparison of Eq. (4a) and (46) with the Burke-Schumann condition in 
tbe oxygen and fuel regions. By this transformation in the left-hand side, the time 
derivative dZ/dt ís substituted by d(Z/x)dt and the equation is thus discretized as 
for the momentum equations. 

In Fig. la the distributions of the Une Zs — 0.25 are given for a valué of Pe = 
T/DT = 5000 at different times in tenas of the coordinates z = r¡cos(6) and 
y = i) úa(0) with J? = r/ y/{Tt/2i() the similarity variable, r and 9 being radial and 
azimuthal coordinates in the physical domain. The oscillatíons inside tbe spiral of 
Fig. la, observed at t = 4, are due to the grid (129 x 129) which is not fine enough 
to represent the very sharp gradients at this Pe. These oscillations disappear due 
to düfusivity, and the solution reaches a self-similar distribution where advection 
is balanced by difFusivity. In Fig. Ib the self-similar solutions at different Pe are 
shown and these solutions compare well with the theoretical results obtained by 
Liñán. 
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Having verified that the numérica inethod can satisfactorily dea! with non-unity 
Lewis numbers, we move on to more realistic computations oí a fuel jet exhausting 
into stagnant air. In what follows we use the mean exhaust velocity and the radius a 
of the exhaust pipe as units of velocity and lcngth. The Reynolds number based on 
these quantities is Re = 2500 for the simulations presented in this section, tbis valué 
being a limit fixed by the present computer's limitations. The injection velocity is 
uniform except for a thin boundary layer with a momentum thickness of roughly 
a/60. This inlet velocity profile is very similar to the one of the Longmire & Eaton 
experiment, which produced a vortex shedding with a Strouhall number St =• 0.5. 
Several simulations were perfonned without combustión in order to find under what 
conditions the jet can sustain the continuous formation of vortex rings without any 
inlet perturbation. It was observed that the outer boundary should be located at a 
certain minimum distance from the symmetry axis to have a Strouhall number in 
agreement with that in the experiments of Longmire & Eaton (1992). 

Fig. 2 shows the results of three simulations of a methane jet in air for which 
r = 4, Yoo = 0.23, and Lp = 0.8 at a time f = 70 after the onset of injection. The 
figure includes the vorticity field, common to all the simulations,_and the position 
of the flame for Zs = 0.46, 0.166, and 0.044, corresponding to S = 0.92, 4, and 
17.4, which in turn are obtained by setting V>o equalto 0.053, 0.23, and 1. Notice 
how with increasing valué of the stoichiometric ratio S the Same moves toward the 
air side, out of the región of strong shear. 

In these simulations there are source terms in the right hand sides of Eqs. (5)-(7) 
which arise due to the effect of the differential diffusion. These terms can not be 
checked by theoretical considerations as done before for the Z equation; however, 
an obvious physical requirement is that no negative valúes of Yp and of Yo should 
occur. Negative concentrations did indeed appear in our preliminary computations 
during the early stages of the flow (not displayed) when the front of the jet is moving 
into the air and the gradients are very steep. However, these unphysical transient 
oscillations disappear when the round jet is formed. 

In Fig. 3 the variation of the fuel flux, scaled with its inlet valué, is given for the 
three cases mentioned before, showing as expected that in the case of very diluted 
fuel the flux decreases faster than in the other cases. This figure shows that the 
fuel is mainly accumulated within the vórtices and depleted in the braid regions. 
We observe furthermore the large accumulation of fuel in the last vortex formed 
by pairing of previous vórtices. This means that as a result of the combustión the 
cores of the vórtices run out of oxygen, and large quantities of unburned fuel are 
transpoxted fax from the injection place due to the convection of the vórtices thexn-
selves. We did not observe complete fuel consumption in these simulations because 
oí che limited extensión oí the domain in the downstream direction. Simulations 
will be carried out in the future with a longer domain to investígate this issue. Plots 
of the corresponding scaled product concentraron for L? — 1 are shown in Fig. 4, 
showing that the location of the máximum generation of producís coincides with 
the location of máximum fuel consumption. We have also evaluated but not plotted 
here the mixture fraction gradient, and we observe that it has the largest valúes 
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FIGURE 2. Countour plots of the azimuthal vorticity (• )for the jet at í = 70 
and Re - 2500, Pr = 0.72. Contour incrementa A = 0.5. Thick solid line is the 
flame position: a) Zs = 0.46, 6) Zs = 0.166, c) Zs = 0.044. 

in the braid regions where we find also the largest valúes of the concentration of 
the producís. The gradient of Z evaluated at the flame sheet measures the burning 
rate per unit flame flame surface. If it exceeds a critical valué, the flame would be 
locally extiuguished according to the analysís of Liñár: '1974). (See Givi, Jou and 
Metcalfe (1986) for numérica! work on flame extinction in a temporally evolving 
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FIGURE 3. Axial profile of the fuel flux (reduced by ¡ts valué at the inlet) for the 
simulations shown in Fig. 2: 5 = 17.4, S = 4, 5 = 0.92. 

0.04 

FIGURE 4. Axial profile of the products flux for the simulations shown in Fig. 2: 
S = 17.4, S = 4, S = 0.92. 
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FIGURE 5. Axial profile of the products flux for 5 = 4. 
LF-\, LP= 1.2. 

LP = 0.8, 

mixing layer.) 
To investígate the effect of the products Lewis number on the distribution of the 

concentration of the products we have perfonned simulations with Lp — 0.8 and 
with Lp = 1.2. As indicated before, the contour levéis of the product concentration 
for Lp = 1 also give the temperature levéis. Fig. 5 shows for the case r> 0 = 
0.23 = Yoo that the products, which are mainly generated in the braid regions at a 
rate independent of their diffusivity, are more concentrated in the eddies when Lp 
is larger, thua leading to stronger variations of the product flux when the eddies 
travel past a given station. 

4. Temporally evolving mixing layer 
Two-dimensional simulations of a temporally evolving mixing layer have been 

carried out using as initial conditions the base profiles 

ti = eri(i/jry) and 
for Z < Zs 

for Z >Zs 
(10a - b) 

plus initial perturbations proportional to the eigenfunctions of the most «instable 
small perturbation of the error function velocáty profile and its subharmonic. Here 
y¡, the position of th«; ñame, verifies 

1 + tá{^PÍZF'y,) = (j¿\ Í ^ ^ e r f c ( v ' * P r I o y / ) e - * / V ( i / ' - L o ) l ' ' ' 
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FIGURE 6. Overall rate of product generation for: (o) Re = 400. : LF = 1, 
S = 9 (S = 9). : LF = 0.8, S = 7.2 (S = 9). : LF = 0.8, S = 9 
(S = 11.25). : LF = 1.2, 5 = 10.8 (5 = 9). : LF = 1, S = 1 (S = 1). 
(6) fle=1000. : £ F = 1, S = 9 ( 5 = 9). : LF = 0.5, S = 4.5 (S = 9). 

: ¿ F = 1-5, S = 13.5 {S = 9). : LF = 0.5, S = 4.5 (S = 9) with the 
initial conditions of LF = 1. The thin curves to be read oíf the scales to the right 
represent the first mode of the kinetic energy spectrum. 

which, for Zs ^> 1, yields 

Vi V^S. 

1/2 

Eqs. (10) and similar expressions for the total enthalpy and the potential product 
mass fraction correspond tothe paraUel fiow resulting from the evolution of a half-
space (y < 0) filled with Yo = 0, YF = 1 and a half-space (y > 0) filled with 
Yo = 1, YF = 0, movjng initially with opposite velodties. Hereafter velodties are 
acaled with Lalf this velodty differeuce, and distances with the vortidty thiclmess 
of the basic fiow (10a). Pr = 1 in the simulations. 

Fig. 6a shows the overall rate of product generation, 

LátJ - - - • 
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where Yp is the scaled product concentration and L is the streamwise length of 
the computational domain for a number of súnulations with Re = 400 and a time 
interval covering a vortex roll-up. To establish a common basis for comparison, the 
same initial Z was used in all the simulations, corresponding to the base profíle 
(10b) with Pr — Lp = Lo = 1- As can be seen, the rate of product generation 
peaks after roll-up in all thejcases computed, the peak valué being the highest in 
the only case displayed with 5 = 1 (and similar to those of other cases not displayed 
with Lp ^ 1 and S about 1). This is because the ñame sheet then lies inside the 
región of high vorticity and, in the absence of density changes that might alter 
the flow, large portions of the Same are subject to high strain rates that increase 
its surface and the fluxes of the reactants toward it. The other curves in Fig. 6a 
correspond to higher valúes of S, for which the peak valúes increase with decreasing 
Lp or decreasing 5. In the following we give some tentative explanations of these 
resulte. 

The weak dependence of the rate of product generation on the Lewis number of 
the fuel when 5 is kept constant can be understood by noticing that, in the absence 
of molecular transport, each material particle would conserve its initial temperatura 
and mass fractions of fuel and oxygen so that the fields of these variables as well as 
the positionjind shape of the ñame would not change. In particular, the valúes of 
VYo and VYF at the fíame would not depend on Lp, but the dimisión flux of fuel, 
—Lp^VYF, would. What happens is that the stoichiometricratio S is changing with 
Lp to keep S constant; S decreases when Lp decreases, and the fíame then requires 
more fuel to consume the same amount of oxygen, generating more produets. The 
variation, however, is small if S is large because the product generation is then 
essentially determin ¡d by the consumption of oxygen. 

Similarly, to understand the weak dependence of the rate of product generation on 
the stoichiometric ratio, notice that for large valúes of S, the ñame sits in a región 
where the modified mixture fraction is decaying_exponentially, and according to 
(10b), a |VZ| / / o m í = 0(yfZs), with y¡ = OOnZJ1) and Zs = 1/(1 + 5) , should 
be expected. Henee a decrease of S at constant £ f is accomodated with only a 
small shift of the fíame, whereas VYo = - ( 1 + 5)VZ remains practically constant 
and VYF « VZ increases. As before, this implies a weak increase of the rate of 
product generation. 

Further computations were carried out with Re = 1000 and a time interval cov­
ering the first pairing to assess the influence of the molecular transport on the 
previous results and to study the evolution after the roll-up of the vórtices. Rather 
extreme valúes oí Lp were chosen to exaggerate the effect of this parameter, and 
initial conditions (10b) with both Lp = 1 and Lp equal to the valúes actually used 
in the computations were considered in an attempt to describe the influence of this 
factor. The results, in Fig. 6b, have the same appearance as cases with the smaller 
Reynolds number, with slightly lower peak valúes of the rate of product generation. 
No further peaks appear during the pairing procesa. 

Fig. 7 shows the temperatures for LF = 0.5 and 1.5 as well as the vorticity and the 
fíame positions during the first pairing of the vórtices. The máximum temperature 
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FIGURE 7. Results for Re = *000 at r = 38. (a.) Temperature field for LF = 
0.5. (6.) Temperature field for LF = 1.5. (c.) Vorticity field and position of the 
practically coinciding Sames for LF — 0.5 and 1.5. 
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in these pictures is attained at points separated from the flame, a consequence of 
the differential diffusion acting in thin layers that were around the flame at earlier 
times. 

5. Conclusions 

The work carríed out has shown the feasibility of direct numérica! simulations 
of diffusion controlled combustión with non-unity Lewis numbers of reactants and 
producís. In the calculations we have left out the effects of thermal expansión 
and variations of the transport coeflicients due to heat reléase. The preliminary 
calculations should be extended in the future to include effects of heat reléase, and 
a more systematic analysis sbould be carríed out to verify or extend the tentative 
conclusions presented here. 
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