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In this study we have developed a flexible and efficient numerical scheme for the 
simulation of three–dimensional incompressible flows in spherical coordinates. The main 
idea, inspired by a similar strategy as [1] for cylindrical coordinates, consists of a change 
of variables combined with a discretization on a staggered mesh and the special treatment 
of few discrete terms that remove the singularities of the Navier–Stokes equations at the 
sphere centre and along the polar axis. This new method alleviates also the time step 
restrictions introduced by the discretization around the polar axis while it still suffers from 
strong limitations if convection at the sphere centre dominates the flow.
The scheme is second–order accurate in space and is verified and validated by computing 
numerical examples that are compared with similar results produced by other codes or 
available from the literature.
The method can cope with flows evolving in the whole sphere, in a spherical shell and in a 
sector without any change and, thanks to the flexibility of finite–differences, it can employ 
generic mesh stretching (in two of the three directions) and complex boundary conditions.

© 2020 Elsevier Inc. All rights reserved.

Thanks to the growing availability of computational power also the complexity of flows tackled by numerical simulations 
is increasing. Among many, one of the challenges of a computation is the mathematical description of non trivial domains 
and the flows developing within spherical geometries belong to this category.

Indeed, the mapping of spherical to Cartesian coordinates reads x = r cosφ sin θ, y = r sin φ sin θ, z = r cos θ , (Fig. 1) and 
it is not single valued at the centre (r = 0) and on the polar axis (θ = 0, π ) therefore, even if the sphere is among the 
simplest shapes, its natural coordinate system contains mathematical singularities that are reflected also in the governing 
equations for fluid flows (see next section).

Spherical domains have been traditionally used in geophysics [2], oceanography [3], meteorology [4], astrophysics [5], [6]
and magnetohydrodynamics [7] although they are gaining popularity also for industrial [8] and fundamental problems [9], 
[10], [11].

In fact, an important advantage of the spherical coordinates is that their highest degree of symmetry imposes no pre-
ferred orientation and this is a desired property when the system evolves in an unbounded space [12]. That the mesh 
topology could interfere with the flow dynamics was shown by [1] who computed the evolution of an azimuthally unstable 
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Fig. 1. Sketch of the system and coordinate definition.

toroidal vortex ring on a Cartesian square mesh and obtained preferentially the n = 4 wavenumber even if the linear stabil-
ity analysis predicted the n = 5 mode. On the other hand, the same phenomenon, simulated using a polar cylindrical mesh 
[13], correctly showed the emergence of fivefold symmetric structures as expected from the theory [14].

Since the early stability analyses of thermal convection in spherical shells [9], also in later studies [6], [15], [16], [17] the 
variables were expressed by spherical harmonics for the longitude φ and colatitude θ while Chebyshev polynomials were 
mostly used for the radial direction r (Fig. 1). This expansion allowed the development of accurate pseudo–spectral methods 
that avoided the equation singularity at the polar axis.

All these studies, however, did not cope with the singularity at the sphere centre (r = 0) since the equations were solved 
only in the gap between two concentric spheres.

On the other hand, [18] developed a spectral method that could discretize the equations up to the sphere centre by us-
ing only the even order Chebyshev polynomials for the radial direction that avoided the unnecessary mesh refinement near 
the origin. Also [19] simulated the whole sphere although they used Jacoby polynomials that, in addition to the previous 
property, satisfy also the regularity conditions at the poles. Using this numerical scheme [20] were able to simulate magne-
tohydrodynamic processes in a precessing sphere. [21] developed a Navier–Stokes spectral solver in a sphere employing a 
latitude dependent number of modes that avoided the difficulties with the sphere centre and polar axis.

Spectral methods are generally preferred to other approaches since, although the overall accuracy depends also on the 
dealiasing schemes, they yield smaller numerical errors for a given number of nodes (modes). However, as shown by [22], 
finite–difference approximations, if properly implemented, become very competitive cost–wise with respect to spectral 
methods even considering that the former require more computational nodes to achieve the same precision. In addition, 
if the simulation has to cope with complex boundary conditions, variable fluid properties or generic node distributions 
then finite–differences are the best option. An important point evidenced in [22] is that the staggered discretization of the 
variables is key to obtain good performance of second–order finite–differences; in this case the complication of the numer-
ical scheme is largely compensated by a more physical velocity/pressure coupling and by a dispersion error that becomes 
smaller than a fourth-order collocated method with the same resolution.

Despite these advantages, the literature on finite–difference methods for the solution of the Navier–Stokes equations 
in spherical coordinates is scarce and, to the knowledge of the authors only few studies are available. [23] presented a 
method for solving the equations in a spherical shell by finite–difference approximations on a staggered mesh in all three 
directions; the variables were modified at the poles by semi–analytic corrections to avoid stability issues. [24] solved the 
linear Boussinesq convection in a spherical shell using Fourier modes along the latitude φ and finite–differences in r and 
θ . The model was completed with the nonlinear convective terms in [25] and, in both cases, in order to avoid the stability 
limitations at the polar axis, a low–pass filtering of the solution was applied around the poles. Apparently, this smoothing 
strategy was widely adopted in the atmospheric community and [26] described it in a systematic way.

[27] relied on finite–difference approximations in all three directions for the simulation of convection in a rotating 
spherical shell and, also in this case, a low–pass filter near the poles was employed.

[28] used the code PARODY to simulate convection–driven numerical dynamos in a spherical shell; in this case second–
order finite differences were used only for the radial directions while spherical harmonics were adopted for the lateral 
ones. The scheme was very similar to that of [6] although the new radial discretization made the code suitable for parallel 
computation on distributed memory clusters.

In the paper [29], second–order finite–differences are employed to solve the Navier-Stokes equations in spherical co-
ordinates relying only on the semi–conservative form of the equations and on the discretization on a staggered–mesh to 
remove the singularities. However, only flows within two spherical shells are considered, thus never coping with the singu-
2
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larity at r=0. In addition, all their examples had vanishing meridional velocity at the poles therefore the singularities of the 
equations were not really tackled.

[30] proposed a clever procedure to avoid the polar singularity (both, cylindrical and spherical) by extending the radial 
coordinate to negative values and discretizing the domain so that no nodes are located at r = 0. They consider the compress-
ible Navier–Stokes equations and use a co–located discretization with high order finite–differences for the radial direction 
and spectral methods in the remaining ones. The application of the same method to a fully staggered discretization for the 
incompressible Navier–Stokes equations is not obvious and it would presumably require substantial changes.

In the context of magnetohydrodynamics, [31] developed a second–order finite–volume method for the solution of the 
Euler equations in orthogonal curvilinear grids and, therefore, also in spherical coordinates. They employ a staggered dis-
cretization of the variables and rely on ‘ghost zones’ to compute some terms of the equations at the singular boundaries. 
[32] developed a second–order, finite–volume method with a spherical discretization around a solid sphere overlapped to a 
Cartesian mesh with the variables at the poles replaced by two–point averages similarly to what suggested by [30].

Also [33] adopted a similar approach to perform simulations of turbulent flows around moving spherical particles.
The study by [34] uses a finite–volume method to solve the Navier–Stokes equations in spherical coordinates. In this 

case, however, neither the singularity at the centre nor at the polar axis is encountered since the domain of interest is 
restricted to a spherical sector in which the self–similar region of a round jet is computed.

In this paper we present a novel numerical method for the solution of the incompressible Navier–Stokes equations in 
spherical coordinates. It is based on second–order finite–difference approximations on a staggered mesh that, combined 
with a change of variables and a special treatment of some discretized terms, eliminates the singularities at the polar axis 
and at the sphere centre, simultaneously. The same method can be applied both, to flows developing in a spherical shell 
and in the whole sphere up to r = 0 without any change in the numerical procedure.

The time step restrictions introduced by the discretization around the polar axis and sphere centre are attenuated for 
the former region while the latter still gives strong time step limitations, although only in very unfavourable cases with the 
largest flow velocity occurring at r = 0.

We show that the method maintains the second–order accuracy and yields free–divergence velocity fields to machine 
precision even when using computational meshes that are unnecessarily refined at the polar axis and sphere centre.

The method is verified and validated by computing numerical examples that stress the treatment of the equations at the 
singular points and by comparing the results with analogous computations available from the literature.

Finally, since the proposed method takes after the scheme of [1] it shares the same variable arrangement and memory 
layout, therefore it is efficiently and massively parallelized as done in [35].

The paper is organized as follows: in the next section we present the equations and the change of variables adopted to 
remove the singularity. In section 2 we discuss the discretization of the variables and the technicalities needed for some 
terms while in section 3 we briefly describe the numerical method. In section 4 a number of numerical examples is shown 
and discussed to assess the reliability and efficiency of the method. Finally in section 5 the closing remarks and perspectives 
for future work are given.

1. The equations

The continuity and momentum equations for an incompressible and viscous flow, in non dimensional form and in spher-
ical coordinates, read [37]:
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where uφ , ur and uθ are the velocity components in the longitudinal, radial and colatitude directions, respectively, p the 
pressure and fφ , fr and fθ forcings that could be used for volume forcings such as Coriolis accelerations. Re = U L/ν is the 
Reynolds number defined by appropriate velocity U and length L scales and ν is the kinematic viscosity of the fluid.
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In the above equations the following relations are used:

u · ∇q ≡ ur
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As anticipated in the Introduction, many terms of Equations (1)–(2) become singular at the origin (r = 0) and at the North 
and South poles, respectively, θ = 0 and θ = π (hereinafter referred to as ‘polar axis’) and this is not due to the physics 
described by the equations but to the spherical coordinate transformation that is not single valued at those points. Another 
drawback is that the coordinates r = 0 and θ = 0, π do not coincide with physical boundaries, such as a solid wall or a slip 
surface, therefore boundary conditions for the unknowns can not be easily computed there. The same argument does not 
apply to the longitudes φ = 0, 2π that, being the same physical point, can benefit from periodic boundary conditions that 
do not need explicit values for the unknowns.

Following [1] and motivated by the above arguments, we introduce a new set of unknowns q = (qφ, qr, qθ ) =
(uφ, urr2, uθ sin θ) that, according to Equation (1), can also be thought of as volume fluxes. An immediate advantage is 
that these variables yield qr(φ, 0, θ) = qθ (φ, r, 0) = qθ (φ, r, π) ≡ 0 therefore transforming the difficult singular points for u
in trivial boundary conditions for q.

By proper manipulation of Equations (1)–(2) they can be easily rewritten in terms of the new variables q:
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that now can be discretized on a computational grid.
It is worthwhile noticing that the above equations, once discretized on a staggered–mesh, are equivalent to those for 

the contravariant velocity components (multiplied by the cell volume) in general curvilinear coordinates as shown in [38]. 
However, the equations in general curvilinear coordinates entail several metric terms that add to the operation count and to 
the storage requirement, leaving aside the augmented data–transfer across nodes in parallel computing. On the other hand, 
in spherical coordinates the metric terms reduce to a one–dimensional vector for the radial direction and a two–dimensional 
array (obtained by the product of two one–dimensional vectors) for the azimuthal direction [37] thus largely reducing the 
mentioned drawbacks.
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Fig. 2. a) Staggered arrangement of the discrete variables and cells next to the sphere centre. b) Cells near the North pole of the sphere.

2. Variable discretization

Equations (3), (4a)–(4c) are discretized by central second–order accurate finite–difference approximations along the same 
line as [1]. Here we describe the technicalities needed for the calculation of some representative terms.

We refer to the sketch of Fig. 2 where the staggered arrangement of [39] is adopted and the node indices 1 ≤ i ≤ Ni , 
1 ≤ j ≤ N j , 1 ≤ k ≤ Nk span the 0 ≤ φ ≤ 2π , 0 ≤ r ≤ R and 0 ≤ θ ≤ π coordinates, respectively.

Let the nodes A and B have, respectively, i, j, k and i + 1, j + 1, k + 1 indices then qr(i, j, k) is located at the position 
(φi+1/2, r j, θk+1/2) which is the centre of the r–normal face of the cell. Similarly qφ(i, j, k) is at (φi, r j+1/2, θk+1/2), qθ (i, j, k)

at (φi+1/2, r j+1/2, θk) and the pressure at the cell centre (φi+1/2, r j+1/2, θk+1/2). This implies that only the variable qr has N j
values in the radial direction while it has Ni − 1 and Nk − 1 values in the longitude and colatitude directions, respectively. 
Similar considerations apply to the other velocity components.

Within the staggered discretization only qr is located at the sphere origin r1 = 0 (Fig. 2a) where, however, Equation (4b)
does not need to be solved because qr(i, 1, k) ≡ 0 is a boundary condition.

The same argument applies to Equation (4c) in which, for θ = 0 and θ = π , it results qθ ≡ 0.
The variable change combined with the staggered discretization allows the straightforward computation of almost all 

terms of Equations (3), (4a)–(4c) without coping with the singularities. As an example, we take the term (1/r2)∂(qrqθ )/∂r
of the qθ equation for which, because of the staggering, the first radial node is at j = 3/2. Evidencing by bold face the 
indices in the differentiated direction we obtain:
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While we have omitted all the averages needed to locate the unknowns at the appropriate positions for the differentiation, 
(e.g. (qrqθ )i+1/2,2,k = [qr(i, 2, k +1) +qr(i, 2, k)][qθ (i, 3, k) +qθ (i, 2, k)]/4) we note that all the quantities are perfectly defined 
(r3/2 = �r1/2 and (qr)i+1/2,1,k = 0) and the derivative can be computed without any problem.

Along the same line, the term 1/(r sin θ)∂(qφqθ )/∂θ of the qφ equation computed at the North pole (k = 3/2) node 
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that, again, is not singular neither at the North pole (sin θ3/2 �= 0) nor at the first radial node (r3/2 �= 0).
The evaluation of the viscous terms at the origin (r = 0) and at the poles (θ = 0 and θ = π ) benefits from the pres-

ence of the metrics that avoid the explicit computation of derivatives at these locations. For example, the discrete term 
(1/r2)∂/∂r(r2∂qφ/∂r) in the qφ equation at j = 3/2 is:
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that does not need the evaluation of ∂qφ/∂r at j = 1 being multiplied by r1 ≡ 0.
Similarly, the term 1/(r2 sin θ)∂/∂θ(sin θ∂qr/∂θ) of the qr equation at the North pole reads:
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and it does not need the evaluation of ∂qr/∂θ at k = 1 since sin θ1 ≡ 0. Note that the term 1/r2 is not a problem because 
the qr equation is evaluated only for j ≥ 2.

Despite the change of variables and the staggered discretization still there are few terms that need a special treatment 
at the singular points; one of them is ∂/∂r[r2∂(qr/r2)/∂r] of the qr equation that for j = 2 becomes
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with the quantity (qr)i+1/2,1,k+1/2/r2
1 that can not be evaluated directly.

A possible strategy is to transform the derivative
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r2 ∂qr/r2
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∂r2
− ∂

∂r

(
2qr

r

)
, (10)

whose right hand side that can be computed in a straightforward way. It is worth mentioning, however, that the above 
equivalence is valid only in the continuum limit while differences arise when both sides are discretized.

A different approach is to maintain the formulation (9) and replace the singular quantity by a surrogate obtained by 
an average with the two counterparts ‘opposite’ to the singular point. This approach had already been used successfully 
for the axis of polar cylindrical coordinates by [40] and [1] although it has to be modified in the spherical case since the 
singularities at the centre and at the polar axis need a different treatment.

In the case of Equation (9) we recall that qr/r2 = ur and use the second–order midpoint interpolation ur(φ, 0, θ) =
(ur(φ, �r, θ) − ur(φ + π, �r, π − θ))/2 + O(�r2) in which the minus comes from the opposite orientation of the radial 
velocity in the mirror plane (Fig. 2a). With the discrete variables we have
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1

≈ 1

2

[
qr(i,2,k)

r2
2

− qr(i + Nir/2,2, Nkr − k)

r2
2

]
, (11)

with Nir = Ni − 1 and Nkr = Nk − 1 the number of qr points in the azimuthal and colatitude directions, that make possible 
the evaluation of the viscous term through (9).

All the other terms needing the evaluation at j = 1 of qr/r2 can be treated in the same way.
Similarly, for the qθ equation, the term (1/r)∂(qθqθ / sin θ) requires the evaluation of qθ / sin θ at k = 1 and k = Nk

which can not be done directly. Again we use the relation qθ / sin θ = uθ and write uθ (φ, r, 0) = (uθ (φ, r, �θ) − uθ (φ +
π, r, �θ))/2 +O(�θ2) that with the discrete variables becomes:

qθ (i, j,1)

sin θ1
≈ 1

2

[
qθ (i, j,2)

sin θ2
− qθ (i + Niθ /2, j,2)

sin θ2

]
, (12)

with Niθ = N1 − 1 and a similar expression for θ = π (k = Nk). The same approach can be adopted for the viscous term 
needing the evaluation of qθ / sin θ at the polar axis.

Note that, differently from the sphere centre, at the polar axis there is no colatitude inversion to select the mirror point.
This averaging procedure across the singular boundary is very similar to that of [31] who extends the computational 

domain to ‘ghost zones’ across the singularities to compute the necessary quantities.
A possible cause of concern is that the special discretizations of some singular terms couple the meridional plane at φi

with that at φi +π thus creating communication issues which would impede performance on highly parallel computers. This 
is however not the case since the above procedures require only one extra halo cell at the singular point and the involved 
data communication is irrelevant. In fact the same strategy is used in [35] for the equations in cylindrical coordinates that 
are solved on massive parallel computers using up to 3.2 × 104 processors. Additional details are given in [36] where it is 
explained that the one–dimensional decomposition of the cylindrical domain of [35] is performed by slicing the domain in 
slabs perpendicular to the axis (subcylinders); this translates for the sphere to subdomains bounded by two iso–colatitude 
surfaces.
6
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3. Numerical method

Equations (3), (4a)–(4c) are integrated using the fractional–step method detailed in [1] and briefly summarized below. 
The momentum equation for q = (qφ, qr, qθ ) is provisionally advanced in time using the old pressure field:

q̂ − ql

�t
=

[
γ lNl + ρlNl−1 − αl∇pl + αl V̂ − Vl

2

]
. (13)

Here the superscript l indicates the time–step level, αl , γ l and ρl are the coefficients of the time integration scheme 
(second–order Adams–Bashfort or third–order Runge–Kutta). N contains the explicit nonlinear terms, body forces and the 
off–diagonal viscous terms, while V the implicit diagonal viscous terms.

Since the pressure is not updated, the resulting velocity field is not locally free–divergent and is denoted by q̂. The 
correct velocity, however, must differ from the provisional one only by a gradient term, thus we can write:

ql+1 = q̂ − αl�t∇�, (14)

whose divergence yields the elliptic equation for the unknown correction:

∇2� = ∇ · q̂

αl�t
. (15)

Once the scalar field � is determined, the solenoidal velocity ql+1 is computed by Equation (14) and the new pressure 
through:

pl+1 = pl + � − αl�t

2Re
∇2�. (16)

The implicit treatment of the diagonal viscous terms of (13) would require the inversion of a large sparse matrix that 
is very time consuming; this is avoided by using the approximate factorization technique of [41] that requires only the 
inversion of three tridiagonal matrices with an error O(�t3).

Being the nonlinear convective terms computed explicitly, the equations should satisfy only the C F L stability conditions 
that is C F L ≤ 1 for the Adams–Bashfort and C F L ≤ √

3 for the third–order Runge–Kutta scheme. The off–diagonal viscous 
terms, however, are also computed explicitly to avoid the implicit coupling of the three momentum equations and this 
deteriorates the stability properties of the scheme. The actual C F L value used for the simulations therefore must be reduced 
with respect to the theoretical value and the amount of reduction depends on the Reynolds number and on the specific 
flow. In our applications we have found that halving the convective C F L limit yields a safe enough condition that allows the 
stable integration of the equations; it is worth mentioning, however, that this criterion must be taken as a rule of thumb 
and not as a strict limitation. It is important to note that the C F L restriction of the time step is linearly dependent on the 
modulus of the unknowns and the proposed variable change (qr = urr2 and qθ = uθ sin θ ) helps decreasing their magnitude 
in the regions around the singular boundaries. This might explain why, as we will see in the next section, despite the non 
vanishing flow at the sphere centre and the polar axis, the time step is not as severely restricted as it would be expected 
from the C F L condition based on the raw velocities.

The current implementation of the method allows the use of generic non–uniform mesh distributions in the radial 
and colatitude directions. The reason for maintaining the uniform discretization in the remaining longitudinal direction is 
that we use trigonometric expansions and fast–Fourier–transforms to reduce the elliptic Equation (15) to a series of two–
dimensional Helmholtz equations in the other two coordinates that are solved using the direct method of [42] or [43].

4. Results

In this Section we assess the qualities of the proposed numerical method by showing several numerical examples and 
benchmarking them with the results from other codes or those available from the literature.

4.1. Hill vortex

As a first example we consider a spherical Hill vortex [44] which is an exact solution of the Euler equations and, in the 
inviscid limit, preserves its shape and propagates with a constant velocity along a rectilinear trajectory.

The vortex is defined by assigning its toroidal vorticity ω = Aσ within the sphere of radius a and centre C with an 
irrotational flow outside; the translation velocity of the ring is then U0 = 2Aa2/15 (Fig. 3a) and the Reynolds number is 
defined as Re = 2aU0/ν . Different initial positions C and velocity orientations U0 have been simulated in order to stress 
the stability, the accuracy and the reliability of the method.

If not specified otherwise, the simulations have been performed in a domain of radius R = 7a discretized by a mesh of 
1293 nodes using Re = 2500.
7
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Fig. 3. a) Sketch of the Hill vortex setup in the longitudinal sections φ = 0, π of the spherical domain. b) Time evolution of the vortex centre coordinates 
for the case at Re = 2500 with φC = π , rC = 1, θC = π/2. XC = rC cos φC sin θC , XC from the code in Cartesian coordinates [45], thin 

theoretical XC ; YC = rC sin φC sin θC ; ZC = rC cos θC . (For interpretation of the colours in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 4. Time evolution of the Hill vortex at Re = 2500 in the longitudinal sections φ = 0, π ; longitudinal vorticity (�ωφ = ±0.4) for negative 
values; a) t = 0.5, b) t = 1, c) t = 1.5. Initial centre of the vortex: φC = π , rC = 1, θC = π/2. Hereinafter, the black bullet indicates the origin of the 
spherical system.

Fig. 5. Time evolution of the Hill vortex at Re = 2500 evolved on a Cartesian uniform mesh; out–of–the–page vorticity (�ω = ±0.4) for negative 
values; a) t = 0.5, b) t = 1, c) t = 1.5.

In Fig. 3b we report the trajectory of the vortex, through the Cartesian coordinates of the velocity peak, that moves 
horizontally with a constant velocity and crosses the sphere centre (r = 0) (Fig. 4). It can be noted that while YC and ZC

remain negligible in time, XC increases linearly thus confirming the constant translation velocity. In fact, a close inspection 
of XC reveals a small deviation with respect to the theoretical straight line; this is due to the finite viscosity of the flow 
(Re = 2500) that perturbs the exact inviscid solution and deforms the initial vortex shape. That the vortex deformation is 
indeed due to viscosity and not to the discretization on spherical coordinates is confirmed by the results of Fig. 5 in which 
the same Hill vortex has been evolved using the code in Cartesian coordinates AFiD [45]. From the same calculation we have 
extracted also the trajectory of the vortex that perfectly overlaps with its counterpart computed in spherical coordinates.
8
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Fig. 6. a) Decay of the total kinetic energy in time for the Hill vortex: results from the code in spherical coordinates results from the 
Cartesian code [45]. In the inset: and Re = 2500 for the Hill vortex with initial offset. and Re = 2500 for the Hill vortex resolved on 
a mesh refined around the singular points. b) L2–norm of the error as function of the mesh size for the case at Re = 2500. 2–slope, 
1–slope. � is the mean grid spacing defined as � ≡ [V /(Ni N j Nk)]1/3 with V the volume of the computational domain. φC = π , rC = 1, θC = π/2.

The same comparison between spherical and Cartesian codes has been repeated for a wide range of Reynolds numbers 
and in Fig. 6a we report the time evolution of the flow kinetic energy (K = 0.5 

∫
V u2dV ), normalized by the initial value, for 

several Reynolds numbers showing that, despite the very different meshes, the kinetic energy decays always at an identical 
rate that depends only on Re.

Even if the results are the same, the simulations in spherical coordinates are more expensive than the Cartesian coun-
terparts owing to the time step limitations introduced by the mesh around r = 0. For example, using the third–order 
Runge–Kutta as time integration scheme and a working C F L of 1.2, the simulation at Re = 2500 on a 1293 mesh in a 43

domain runs with a time step �t 
 2 × 10−2 throughout the whole computation. The same case on the spherical mesh 
had C F L = 0.6 with a dynamically adjusted time step of �t 
 10−2, when the vortex was far from the sphere centre, and 
�t 
 10−4 during the crossing phase. As a result, the CPU time for the latter simulation was about 14 times bigger than 
that of the former.

We wish to point out that the reason for this large computational overhead is the Hill vortex flow that, with its strongest 
velocity components perpendicular to the polar axis near the sphere centre, is particularly unsuitable for the spherical 
discretization. Nevertheless it has been chosen on purpose, in order to show that the numerical method can be used even in 
the most unfavourable conditions without loosing stability or precision. It is important to note that the time step limitation 
is mainly given by the discretization at the sphere centre and not by the polar axis. In fact, later in this section we show 
that when the Hill vortex has an initial offset of θC = 2π/3, with respect to the symmetry plane θ = π/2, the time step 
reduction during the crossing of the polar axis is only a factor ≈ 3–4 even if the largest velocity is still perpendicular to 
the coordinate line θ = 0. Finally, in the next sections we will consider numerical examples in which the flow evolves in 
between two spherical shells and there the time step is limited only by the radial refinement of the mesh at the solid 
boundaries and not by the singularity at the polar axis.

Since the most critical phase of the simulation is the vortex centre crossing the point r = 0, here we have evaluated 
the code accuracy by assuming as reference solution that performed on the finest mesh 1459 × 1297 × 730 (in φ, r and θ ) 
and comparing it with grids successively coarsened by a factor 3 in each direction. This coarsening factor is such that, on 
a staggered mesh, it allows to compare the velocity components of different grids without interpolation and therefore to 
compute the raw accuracy of the numerical method. This set of simulations has been run with the same constant time step 
(�t = 6 × 10−6) that was imposed by the stability of the simulation run on the finest mesh.

In Fig. 6b we report the L2–norm of the error computed for four meshes and, apart for the coarsest (19 × 17 × 10), the 
error decreases quadratically with the mesh size thus confirming the second–order accuracy.

We have further stressed the numerical method by giving the Hill vortex an initial offset with respect to the symmetry 
plane θ = π/2. It can be observed from Fig. 7 that in this case no coordinate lines are aligned with the vortex axis and 
nevertheless the vortex translates along a horizontal rectilinear trajectory showing the same dynamics as in Fig. 4. Also the 
total kinetic energy of the flow decays in time in the same way as the other Re = 2500 cases (Fig. 6a) and this confirms 
that the vortex evolution does not depend on the mesh orientation. Similarly to the case of Fig. 4, also for this simulation 
the time step has been dynamically computed in time to keep the C F L constant at the value of 0.6. In this case, however, it 
resulted �t 
 10−2 at the beginning of the simulation and it decreased to �t 
 2.7 × 10−3 during the crossing of the polar 
axis. Considering that for a Hill vortex the largest velocity occurs at the centre, comparing Figs. 4b and 7b, it is clear that 
the most important limitation to the time step comes from the singularity around the sphere centre and not by that at the 
polar axis.

In another test we have positioned the vortex as in the case of Fig. 4 but the mesh has been refined at the sphere 
centre and at the polar axis (in both cases using a hyperbolic tangent distribution with stretching parameter 1.5) in order 
to exacerbate the stability problems of the integration in spherical coordinates. The results of Fig. 8a show that also in this 
9
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Fig. 7. Time evolution of the Hill vortex at Re = 2500 in the longitudinal sections φ = 0, π ; top panels show longitudinal vorticity (�ωφ = ±0.4) 
for negative values; (�u = 0.1) bottom panels for pressure (�p = 0.02); the background mesh is shown with light grey lines. a) and d) t = 0.5, b) and e) 
t = 1, c) and f) t = 1.5. Initial centre of the vortex: φC = π , rC = 1, θC = 2π/3.

Fig. 8. a) Zoom of velocity magnitude (�u = 0.1) of a Hill vortex at Re = 2500 and t = 1 in the longitudinal sections φ = 0, π ; the computational mesh 
is refined on purpose around the singular points. b) Time evolution of the maximum divergence of the velocity field. Initial centre of the vortex: φC = π , 
rC = 1, θC = π/2.

case the vortex crosses the singular region without being distorted and the maximum divergence of the flowfield remains 
at machine precision throughout all the evolution (Fig. 8b). Also the total kinetic energy decay is identical to those of the 
other Re = 2500 cases (Fig. 6a) again showing a vortex dynamics independent of the mesh distribution.

Before concluding this section we wish to show the results of a final test aimed at underlying that the staggering of the 
unknowns, the change of variables and the averaging procedure across the polar axis and sphere centre are all necessary in 
order to remove all the singularities from the incompressible Navier–Stokes equations in spherical coordinates. In fact, while 
for some terms of Eqs. (2) (like the convective ones written in divergence form and involving the momentum flux through 
the perpendicular cell face) the staggered discretization is enough, this is not the case for many other terms of the same 
equations. As an example we consider the quantity uφur/r in the uφ component of Eqs. (2); for the first radial gridpoint the 
term is evaluated at r3/2 = �r/2 therefore the denominator is not singular. However also the velocity component ur must 
be computed at the same point and this should be done by (ur )3/2 = [(ur)1 + (ur)2]/2 with the quantity (ur)1 which is not 
directly available since the sphere centre is a computational boundary but it does not have a physical counterpart thus the 
velocity values there are not known. If we had to rely solely on the variable staggering, the only possibility to estimate (ur)1
is to resort to an extrapolation using (ur)2 and (ur)3.

On the other hand, the same term for Eq. (4a) reads qφqr/r3 which at the first radial node needs (qr)3/2 = [(qr)1 +
(qr)2]/2 with (qr)1 ≡ 0 by definition. Similar considerations apply to several non differentiated nonlinear terms and off–
diagonal viscous terms of Eqs. (2).
10
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Fig. 9. Contour lines of longitudinal vorticity (ωφ ) of a Hill vortex at Re = 1000 and t = 1; the simulations are performed on a mesh 973. Panels a) and c): 
meridional sections at φ = 0, π (�ωφ = ±0.375); Panels b) and d): zoom of the region around the sphere centre with the computational mesh reported 
for clarity (�ωφ = ±0.1, for positive, for negative values). Panels a) and b) have been obtained using the discretization described in 
section 2. Panels c) and d) refer to the solution obtained computing the term qφqr/r3 of Eq. (4a) at the axis using an extrapolation for (qr)1.

In order to show by a numerical example how sensitive is the solution to the discretization of the terms, we report in 
Fig. 9 the comparison of two cases in which (qr)1 for the term qφqr/r3 of Eq. (4a) has been computed using the identity 
(qr)1 ≡ 0 (Fig. 9ab) or the extrapolation (Fig. 9cd). It is clear that, although the change has been operated only at the sphere 
centre for a single term of one of the equations, the solution already looks distorted and the problem would be significantly 
exacerbated if the same discretization were adopted for all the other terms.

4.2. Flow in a precessing and spinning sphere

[46] validated their pseudo–spectral method by replicating the same problem as in [19] who studied the flow in a 
precessing and spinning sphere. We benchmark our code using the same test case and, referring to the sketch of Fig. 1, 
we consider flow inside a sphere of radius R spinning about the x–axis at constant angular velocity �s . The system has 
an additional precession angular velocity �p about the z–axis and the sphere surface (r = R) is no–slip. Assuming R and 
�s R , respectively, as scaling length and velocity, the flow depends on two nondimensional parameters Re = �s R2/ν and 
� = �p/�s .

Following [19], [46] we solve the equations in the precessing reference frame

∂u

∂t
+ ∇ · (uu) = −∇ P − 2�̂k ∧ u + 1

Re
∇2u, ∇ · u = 0, (17)

being k̂ the unit vector of the z–axis and P = p − (�2/2)(̂k ∧ r)2 the reduced pressure. The boundary condition for the 
nondimensional velocity at the sphere surface is u|r=R = x̂ ∧ r̂ with ̂x and ̂r the unit vectors of the x–axis and of the radius 
r.

[19] analyzed the flow for � = 0.1 and Re ≤ 500 finding that a steady state is eventually achieved with increasingly 
entangled toroidal structures developed within the sphere. On the other hand, [46] observed that the flow structure could 
be better understood by plotting the velocity field in a reference frame rotating with the spinning sphere v = u − x̂ ∧ r.

Here we consider the case at the highest Reynolds number Re = 500 and compare our results for the steady state 
solution of v at the same three z = const planes as reported by [46]. The simulations have been performed at the same 
resolution and the comparison, given in Fig. 10, shows excellent agreement.

Once again we note that in this numerical example, being the flow velocities very small at the sphere centre (see 
Figs. 10cf) the integration could be carried out at constant C F L = 0.6 with a nondimensional time step of ≈ 4 × 10−2 and 
the limitation was generated by the fine mesh stretched at the sphere surface rather than from the singular points of the 
spherical coordinates.
11
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Fig. 10. Flow in a precessing, spinning sphere at � = 0.1 and Re = 500. The velocity vectors of the field rotating with the spinning sphere v are reported 
in the sections z = −0.66, a) and d); z = −0.33, b) and e); z = 0, c) and f). The contours are for the velocity component vz . a), c) and e) are the results 
adapted from Fig. 7 of [46], b), d) and f), present results.

4.3. Rayleigh–Bénard convection with vertical gravity

In this example we consider the thermally driven flow developing between two concentric spheres of radii Ri and 
Ro whose surfaces are maintained at a temperature difference �T , the inner being hotter than the outer. Following the 
arrangement of [47] the gravity has a constant orientation and points vertically downward as in Fig. 11a.

The flow is solved using the Boussinesq approximation in which all the fluid properties are independent of the temper-
ature except for the density in the buoyancy term of the momentum equation. In addition to the conservation of mass and 
balance of momentum (Equations (2)) here we need also the energy conservation that reduces to the convection–diffusion 
equation for the temperature field. The complete set of governing relations in non-dimensional vector form then reads:

∇ · u = 0,

∂u

∂t
+ u · ∇u = −∇p − ĝT +

√
Pr

Ra
∇2u,

∂T

∂t
+ u · ∇T =

√
1

RaPr
∇2T . (18)

Ra = gβ�t(Ro − Ri)
3/(νκ) is the Rayleigh number with β the isobaric thermal expansion coefficient, κ the thermal 

diffusivity of the fluid, g the magnitude of the gravity and ĝ its unit vector; Pr = ν/κ is the Prandtl number. Referring to 
Equations (2) we can also write ĝ = ( fφ, fr, fθ ) = (sin φ, sin θ cosφ, cos θ cosφ).

Being the temperature a scalar quantity it is located at the cell centre (Fig. 2) and the solution of the last of Equations 
(18) in spherical coordinates does not present particular challenges at the singular points.

In the present flow, a buoyant plume is produced that ascends vertically thus the ‘natural’ arrangement is to have the 
gravity vector aligned with the polar axis so that there are no velocity vectors crossing it. In order to show that the proposed 
numerical method, performs well also in supposedly unfavourable conditions, we have repeated the simulation also with 
the gravity perpendicular to the polar axis.
12
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Fig. 11. a) Section through the meridional planes φ = 0, π of temperature contours (�T = 0.1) for the flow at η = Ri/Ro = 0.5, Ra = 105 and Pr = 0.7. 
Grid 65 × 49 × 49. b) Time evolution of the Nusselt numbers simulation with the gravity aligned with the polar axis, gravity perpendicular 
to the polar axis, reference value of Nu = 3.4012 from [47].

In Fig. 11 we report the results for a case at η = Ri/Ro = 0.5, Ra = 105 and Pr = 0.7 that, after an initial transient, 
attains a steady state.

A usual way to express the heat transfer in thermally driven flows is by the Nusselt number defined as the ratio between 
the heat flux through a surface and its counterpart in absence of flow motion. For this problem it can be computed for the 
inner and the outer spheres to obtain:

Nuo = − 1

η

∂T

∂r

∣∣∣∣∣
r=Ri

, Nui = −η
∂T

∂r

∣∣∣∣∣
r=Ro

, (19)

where the · indicates surface and time averages: if the flow is steady or it attains a statistical steady state the two values 
have to match.

Fig. 11b shows the time evolution of the inner and outer Nusselt numbers for the simulations with the gravity in two 
perpendicular orientations; it can be observed that not only they converge exactly to the same value but also the transient 
evolutions are indistinguishable. The asymptotic Nusselt number is Nu = 3.4105 in excellent agreement with the values 
Nu = 3.4012 of [47], 3.4890 of [48] 3.4648 of [49] and 3.3555 of [50].

Another interesting result is that in both cases, with the gravity aligned or perpendicular to the polar axis, the simulation 
run at constant C F L = 1 yielded a time averaged nondimensional time step �t ≈ 10−2 thus further confirming that the 
present numerical method alleviates the time step restrictions induced by the singularity at the poles.

4.4. Rayleigh–Bénard convection with central gravity

In this numerical example we use the same configuration as in the previous section except for the gravity that now 
points towards the centre of the sphere.

We rely again on Equations (18) with the non-dimensional gravity vector that now reads g = ( fφ, fr, fθ ) = (0, g′(r), 0)

with g′(r) = (Ro/r)2 the non-dimensional radial distribution of gravity. The reason for choosing this specific radial depen-
dence is that, as shown by [51], in this case it is possible to derive exact relations among the Nusselt number and the 
dissipations:

Nu = Pr2

Ra

1 + η + η2

3
εu + 1 = 1 + η + η2

3η
εT , (20)

with εu =< (∇ × u)2 > the kinetic energy– and εT =< (∇T )2 > the temperature variance–dissipation rates averaged over 
the fluid volume and in time, that can be used to verify both, the consistency of the numerical method and to assess the 
statistical convergence of the results. In Fig. 12 we report the results for the case at η = Ri/Ro = 0.6, Ra = 3 × 104 and 
Pr = 1 computed on a 129 × 97 × 97 mesh. It can be observed that, after the initial transient (t ≤ 100) the Nusselt numbers 
computed from Equations (19) and (20) oscillate around a common mean value and the simulation are stopped when their 
averages agree within 1%.

In addition to the heat transfer also the strength of the flow is used to quantify the response of the system and, in 
non-dimensional form, it can be expressed by the Reynolds number. In [51] it was measured by computing the root mean 
square of the velocity field that, however, was scaled by the viscous velocity scale ν/(Ro − Ri). Since in Equations (18) we 
have used the convective velocity 

√
gβ�T (Ro − Ri), the root mean square Reynolds number Re′ of [51] corresponds to the 

quantity 
√

2K Ra/(V Pr) with V the fluid volume and K the kinetic energy of the flow already defined in section 4.1.
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Fig. 12. a) Section through the meridional planes φ = 0, π of temperature contours (�T = 0.1) overlaid with velocity vectors for the flow at η = Ri/Ro = 0.6, 
Ra = 3 × 104 and Pr = 1. Grid 129 × 97 × 97. b) Time evolution of the Nusselt numbers: value computed at the inner surface, value 
computed at the outer surface, value computed from εu , value computed from εT .

Table 1
Main input and out parameters and comparison with the results from [51]. All the 
simulations are run at η = 0.6 and Pr = 1.

Case Ra Nu Re′ Nφ × Nr × Nθ Nu [51] Re′ [51]

1 1.5 × 103 1.327 4.37 65 × 33 × 49 1.33 4.4
2 3.0 × 103 1.812 9.70 65 × 33 × 49 1.80 9.6
3 1.0 × 104 2.527 23.43 65 × 33 × 49 2.51 23.3
4 1.5 × 104 2.828 29.83 97 × 65 × 65 2.81 29.8
5 3.0 × 104 3.428 43.95 97 × 49 × 65 3.40 44.0
6 3.0 × 104 3.443 43.94 97 × 65 × 65 3.40 44.0
7 3.0 × 104 3.412 43.97 129 × 97 × 97 3.40 44.0
8 5.0 × 104 3.924 57.24 97 × 65 × 65 3.89 57.5

In Table 1 we report the values of Nu and Re′ for some cases that show excellent agreement with the analogous values 
obtained by [51]. In the sake of conciseness we have not presented the Nusselt numbers obtained by the dissipations from 
the expressions (20) that, however, deviate from those computed by the wall temperature gradients always by less than 1%
for every simulation.

Cases #5–#7 are grid refinements of the same flow: it is worthwhile to note that Case #5 has a mesh that is coarser 
than Case #6 only in the radial direction and the results are still correct. For the radial distribution of the computational 
nodes of case #5 we have observed from Equations (19) that being Nui = Nuo the temperature gradient at the inner sphere 
must exceed that at the outer sphere by a factor 1/η2. This implies that the wall resolution at the outer sphere can be 
coarser than that at the inner sphere and for the case at η = 0.6, Pr = 1 and Ra = 3.0 × 104 this resulted in a saving of 
about 25% of nodes. In this case, in particular, the radial distribution of the nodes has been assigned as an input from an 
external file built by third–order splines with the conditions �r = (Ro − Ri)/450 at the inner sphere, �r = (Ro − Ri)/200 at 
the outer sphere and �r = (Ro − Ri)/45 halfway between the boundaries.

For these simulations, run only for validation purposes, this is not a crucial advantage since they can be run anyway 
within a few hours on a single Intel I7–2.7 GHz processor. However, when the method is employed to tackle higher Rayleigh 
number flows implying meshes with hundreds of million ([51]) or billions ([35]) of nodes the asymmetric radial stretching 
of the mesh could become very attractive and this is possible thanks to the flexibility of the finite–difference schemes.

4.5. Space–developing jet

In this last application we simulate the spatial evolution of a round jet of initial diameter d and mean inflow velocity Uin

with a Reynolds number Re = Uind/ν . Here we follow the idea of [34] who noted that the coordinate lines of a spherical 
shell sector naturally follow the self–similar spreading of a jet. Another advantage is that the divergence of the φ– and 
θ–isolines yields a more refined mesh for small radii while it coarsens as the radius increases. The computational domain, 
reported in Fig. 13a, is defined as 0 = �i ≤ φ ≤ � f = π/6, Ri = 3 ≤ r ≤ 12 = Ro , and 11π/12 = �i ≤ θ ≤ � f = 13π/12 and, 
since it does not contain any of the singular points, the solution of the governing equations is performed easily. In fact, the 
reason for performing this last test case has not to do with the equation singularity but rather with the possibility of the 
scheme to deal with ‘complex’ boundary conditions.
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Fig. 13. a) Computational set–up for the space developing jet. The isosurface is velocity magnitude | u |= 0.2. b) Instantaneous snapshot plane section 
(φ = (�i + � f )/2) of velocity magnitude (from blue to red) � | u |= 0.1.

At the inner boundary (r = Ri ) a radial velocity profile with mean Uin is prescribed within the circle of diameter d and 
centre ([�i + � f ]/2, [�i + � f ]/2) and perturbed with a white noise of amplitude 0.02Uin . At the outflow we impose the 
convective boundary condition as in [52]:

∂qi

∂t
+ U R

∂qi

∂r
= 0, (21)

that advects all the velocity components qi out of the domain with the velocity U R that is dynamically adjusted to assure 
mass conservation to the machine precision. Periodicity is imposed in the azimuthal and colatitude directions.

The simulation has been performed on a mesh of 97 × 257 × 97 nodes at a Reynolds number Re = 5000 and an instan-
taneous snapshot of the velocity magnitude through the mean plane φ = (�i + � f )/2 is shown in Fig. 13b.

We wish to point out that our azimuthal and colatitude periodic boundaries are different from those of [34] who used 
traction–free conditions [53] at these lateral planes. The latter (obtained by imposing the scalar product between the total 
stress tensor and the boundary normal to be zero) are certainly more correct since they allow flow transpiration without 
yielding stress in contrast to periodicity that, representing an infinite array of jets, unavoidably induces some confinement. 
Owing to this important difference, we do not make any quantitative claim about the dynamics of the jet and do not 
attempt comparisons with [34]; we use this calculation only to show the flexibility of the proposed method that allows 
within the same ease the imposition of simple, homogeneous boundary conditions, such as the no–slip of sections 4.3 and 
4.4, and the inhomogeneous inflow/outflow conditions of the space–developing jet.

5. Conclusions

In this paper we have shown that the combination of a change of variables with a central–, second–order accurate 
finite–differences on a staggered mesh and the special treatment of some discrete terms removes the singularities of the 
Navier–Stokes equations for an incompressible viscous flow in spherical coordinates. We wish to stress that although some 
terms (like that of Eq. (5) and more in general the differentiated convective ones) need only the variable staggering to be 
computed at the singular boundaries, the same is not true for the non–differentiated nonlinear and the off-diagonal viscous 
terms. This is consistent with the findings of [32] and [31] that, in addition to the staggered discretization, had to adopt 
special averages at the singular nodes.

Some numerical applications have been considered with the aim of stressing the stability of the scheme and its capability 
to reproduce reference results.

Most of the tests have been performed using a spherical Hill vortex that, in the inviscid limit, is an exact solution of 
the governing equations and propagates along a rectilinear trajectory with a constant velocity. The numerical procedure 
has shown to be second–order accurate and to reproduce the results obtained for the same flows by a code in Cartesian 
coordinates. The method performed equally well even when the vortex centre was offset with respect to the symmetry 
plane θ = π/2 or the mesh was unnecessarily refined around the singular points.

Another benchmark has been performed by simulating the flow within a precessing, spinning sphere for the same param-
eters as those considered by [19] and [46] obtaining a perfect agreement with their results produced by spectral methods.
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Equally good results have been obtained for thermally driven flows in which only the singularity at the polar axis was 
present although the flow physics was enriched by the presence of the additional temperature field; the heat transfer of 
these flows was always in excellent agreement with other similar studies and even the exact relations between heat transfer 
and dissipation rates were perfectly satisfied.

An important drawback related to the spherical coordinates is the time step limitation introduced by the discretization 
around the singularities. The proposed numerical method has shown to alleviate this problem for the polar axis and, for 
the flow in spherical shells with the grid stretched radially at the solid boundaries, the restriction induced by the latter 
outweighs that of the former. On the other hand, the singularity at the sphere centre still introduces strong time step 
limitations if convection at the sphere centre dominates the flow.

Although the merits of the proposed numerical method have been evidenced by reproducing simple canonical flows, for 
which benchmark results are available, its main merits are related to the flexibility of finite–differences. In the evolution 
of a space developing round jet (Section 4.5) we have qualitatively shown the possibility to use complex inflow/outflow 
boundary conditions while for the thermal convection with central gravity we have employed generic nonuniform meshes 
(Case # 5 of Section 4.4).

These finite–difference features are particularly appealing if the code has to be applied to realistic flows, such as the 
mantle convection of a planet [54], in which complex boundary conditions, but also inhomogeneous forcings and variable 
fluid properties, have to be accounted for.

Another important advantage of finite–difference methods is the relative ease of parallelization related to the local nature 
of the discrete differencing; this is true also for the present scheme inspired by that of [1] and with the same variable 
arrangement and memory layout. The latter has been massively parallelized in [35] and run on up to 3.2 × 104 cores. Also 
the present scheme in spherical coordinates has been parallelized and it is already running on hundreds of processors to 
simulate thermally driven turbulent flows; these results will be the subject of a forthcoming paper.
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