79 research outputs found

    A synthetic biochemistry platform for cell free production of monoterpenes from glucose.

    Get PDF
    Cell-free systems designed to perform complex chemical conversions of biomass to biofuels or commodity chemicals are emerging as promising alternatives to the metabolic engineering of living cells. Here we design a system comprises 27 enzymes for the conversion of glucose into monoterpenes that generates both NAD(P)H and ATP in a modified glucose breakdown module and utilizes both cofactors for building terpenes. Different monoterpenes are produced in our system by changing the terpene synthase enzyme. The system is stable for the production of limonene, pinene and sabinene, and can operate continuously for at least 5 days from a single addition of glucose. We obtain conversion yields >95% and titres >15 g l-1. The titres are an order of magnitude over cellular toxicity limits and thus difficult to achieve using cell-based systems. Overall, these results highlight the potential of synthetic biochemistry approaches for producing bio-based chemicals

    Lessons from Two Design–Build–Test–Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning

    Get PDF
    The Design–Build–Test–Learn (DBTL) cycle, facilitated by exponentially improving capabilities in synthetic biology, is an increasingly adopted metabolic engineering framework that represents a more systematic and efficient approach to strain development than historical efforts in biofuels and biobased products. Here, we report on implementation of two DBTL cycles to optimize 1-dodecanol production from glucose using 60 engineered Escherichia coli MG1655 strains. The first DBTL cycle employed a simple strategy to learn efficiently from a relatively small number of strains (36), wherein only the choice of ribosome-binding sites and an acyl-ACP/acyl-CoA reductase were modulated in a single pathway operon including genes encoding a thioesterase (UcFatB1), an acyl-ACP/acyl-CoA reductase (Maqu_2507, Maqu_2220, or Acr1), and an acyl-CoA synthetase (FadD). Measured variables included concentrations of dodecanol and all proteins in the engineered pathway. We used the data produced in the first DBTL cycle to train several machine-learning algorithms and to suggest protein profiles for the second DBTL cycle that would increase production. These strategies resulted in a 21% increase in dodecanol titer in Cycle 2 (up to 0.83 g/L, which is more than 6-fold greater than previously reported batch values for minimal medium). Beyond specific lessons learned about optimizing dodecanol titer in E. coli, this study had findings of broader relevance across synthetic biology applications, such as the importance of sequencing checks on plasmids in production strains as well as in cloning strains, and the critical need for more accurate protein expression predictive tools

    Molecular characterisation of virulence graded field isolates of myxoma virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Myxoma virus </it>(MV) has been endemic in Europe since shortly after its deliberate release in France in 1952. While the emergence of more resistant hosts and more transmissible and attenuated virus is well documented, there have been relatively few studies focused on the sequence changes incurred by the virus as it has adapted to its new host. In order to identify regions of variability within the MV genome to be used for phylogenetic studies and to try to investigate causes of MV strain attenuation we have molecularly characterised nine strains of MV isolated in Spain between the years 1992 and 1995 from wide ranging geographic locations and which had been previously graded for virulence by experimental infection of rabbits.</p> <p>Results</p> <p>The findings reported here show the analysis of 16 genomic regions accounting for approximately 10% of the viral genomes. Of the 20 genes analysed 5 (M034L, M069L, M071L, M130R and M135R) were identical in all strains and 1 (M122R) contained only a single point mutation in an individual strain. Four genes (M002L/R, M009L, M036L and M017L) showed insertions or deletions that led to disruption of the ORFs.</p> <p>Conclusions</p> <p>The findings presented here provide valuable tools for strain differentiation and phylogenetic studies of MV isolates and some clues as to the reasons for virus attenuation in the field.</p

    Design and implementation of the canadian kidney disease cohort study (CKDCS): A prospective observational study of incident hemodialysis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many nephrology observational studies use renal registries, which have well known limitations. The Canadian Kidney Disease Cohort Study (CKDCS) is a large prospective observational study of patients commencing hemodialysis in five Canadian centers. This study focuses on delineating potentially reversible determinants of adverse outcomes that occur in patients receiving dialysis for end-stage renal disease (ESRD).</p> <p>Methods/Design</p> <p>The CKDCS collects information on risk factors and outcomes, and stores specimens (blood, dialysate, hair and fingernails) at baseline and in long-term follow-up. Such specimens will permit measurements of biochemical markers, proteomic and genetic parameters (proteins and DNA) not measured in routine care. To avoid selection bias, all consenting incident hemodialysis patients at participating centers are enrolled, the large sample size (target of 1500 patients), large number of exposures, and high event rates will permit the exploration of multiple potential research questions.</p> <p>Preliminary Results</p> <p>Data on the baseline characteristics from the first 1074 subjects showed that the average age of patients was 62 (range; 50-73) years. The leading cause of ESRD was diabetic nephropathy (41.9%), and the majority of the patients were white (80.0%). Only 18.7% of the subjects received dialysis in a satellite unit, and over 80% lived within a 50 km radius of the nearest nephrologist's practice.</p> <p>Discussion</p> <p>The prospective design, detailed clinical information, and stored biological specimens provide a wealth of information with potential to greatly enhance our understanding of risk factors for adverse outcomes in dialysis patients. The scientific value of the stored patient tissue will grow as new genetic and biochemical markers are discovered in the future.</p

    ART: A machine learning Automated Recommendation Tool for synthetic biology

    Get PDF
    Biology has changed radically in the last two decades, transitioning from a descriptive science into a design science. Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such as renewable biofuels or anticancer drugs. However, traditional synthetic biology approaches involve ad-hoc engineering practices, which lead to long development times. Here, we present the Automated Recommendation Tool (ART), a tool that leverages machine learning and probabilistic modeling techniques to guide synthetic biology in a systematic fashion, without the need for a full mechanistic understanding of the biological system. Using sampling-based optimization, ART provides a set of recommended strains to be built in the next engineering cycle, alongside probabilistic predictions of their production levels. We demonstrate the capabilities of ART on simulated data sets, as well as experimental data from real metabolic engineering projects producing renewable biofuels, hoppy flavored beer without hops, and fatty acids. Finally, we discuss the limitations of this approach, and the practical consequences of the underlying assumptions failing

    Longitudinal Assessment of the Effect of Atrasentan on Thoracic Bioimpedance in Diabetic Nephropathy:A Randomized, Double-Blind, Placebo-Controlled Trial

    Get PDF
    BACKGROUND: Fluid retention is a common adverse event in patients who receive endothelin (ET) receptor antagonist therapy, including the highly selective ETA receptor antagonist, atrasentan. OBJECTIVE: We performed longitudinal assessments of thoracic bioimpedance in patients with type 2 diabetes mellitus and nephropathy to determine whether a decrease in bioimpedance accurately reflected fluid retention during treatment with atrasentan. STUDY DESIGN: We conducted a randomized, double-blind, placebo-controlled study in 48 patients with type 2 diabetes mellitus and nephropathy who were receiving stable doses of renin angiotensin system inhibitors and diuretics. METHODS: Patients were randomized 1:1:1 to placebo, atrasentan 0.5 mg, or atrasentan 1.25 mg once daily for 8 weeks. Thoracic bioimpedance, vital signs, clinical exams, and serologies were taken at weeks 1, 2, 4, 6, and 8, with the exception of serum hemoglobin, which was not taken at week 1, and serum brain natriuretic peptide, which was only taken at baseline, week 4, and week 8. RESULTS: Alterations in bioimpedance were more often present in those who received atrasentan than in those who received placebo, though overall differences were not statistically significant. Transient declines in thoracic bioimpedance during the first 2 weeks of atrasentan exposure occurred before or during peak increases in body weight and hemodilution (decreased serum hemoglobin). CONCLUSIONS: We conclude that thoracic bioimpedance did not reflect changes in weight gain or edema with atrasentan treatment in this study. However, the sample size was small, and it may be of interest to explore the use of thoracic bioimpedance in a larger population to understand its potential clinical use in monitoring fluid retention in patients with chronic kidney disease who receive ET receptor antagonists
    • …
    corecore