Downloaded by 150.241.212.160 at 06:35:03:157 on June 04, 2019
from https://pubs.acs.org/doi/10.1021/acssynbio.9b00020.

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-commercial purposes.

ACS AuthorChoice

Research Article

pubs.acs.org/synthbio

ACS c -
Sy nt h et I C B | O | O g y @ Cite This: ACS Synth. Biol. XXXX, XXX, XXX—XXX

Lessons from Two Design—Build—Test—Learn Cycles of Dodecanol
Production in Escherichia coli Aided by Machine Learning

Paul Opgenorth "h® 7ak Costello,I “L"’® Takuya Okada,” Garima Goyal,"*® Yan Chen,
Jennifer Gln,T Veromca Benltes, 5 Markus de Raad,™"® Trent R. Northen,T’ " Kai Den§
Samuel Deutsch,” Edward E. K. Baldoo, “%5 Christo her J. Petzold, “*% Nathan J. Hillson, "%
Hector Garcia Martln,{ #3V® and Harry R. Beller® ' #®

Joint BioEnergy Institute (JBEI), Emeryville, California 94608, United States

jr-Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
SDOE Agile BioFoundry, Emeryville, California 94608, United States

IResearch Institute for Bioscience Product & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki 210-8680, Japan

‘Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
United States

*DOE Joint Genome Institute, Walnut Creek, California 94598, United States
ISandia National Laboratories, Livermore, California 94550, United States
VBCAM, Basque Center for Applied Mathematics, 48009 Bilbao, Spain

© Supporting Information

ABSTRACT: The Design—Build—Test—Learn (DBTL) cycle,
facilitated by exponentially improving capabilities in synthetic
biology, is an increasingly adopted metabolic engineering frame-
work that represents a more systematic and efficient approach to
strain development than historical efforts in biofuels and biobased
products. Here, we report on implementation of two DBTL cycles
to optimize 1-dodecanol production from glucose using 60
engineered Escherichia coli MG165S strains. The first DBTL cycle
employed a simple strategy to learn efficiently from a relatively
small number of strains (36), wherein only the choice of ribosome-
binding sites and an acyl-ACP/acyl-CoA reductase were modulated
in a single pathway operon including genes encoding a thioesterase (UcFatB1), an acyl-ACP/acyl-CoA reductase (Maqu_2507,
Maqu_2220, or Acrl), and an acyl-CoA synthetase (FadD). Measured variables included concentrations of dodecanol and all
proteins in the engineered pathway. We used the data produced in the first DBTL cycle to train several machine-learning
algorithms and to suggest protein profiles for the second DBTL cycle that would increase production. These strategies resulted
in a 21% increase in dodecanol titer in Cycle 2 (up to 0.83 g/L, which is more than 6-fold greater than previously reported
batch values for minimal medium). Beyond specific lessons learned about optimizing dodecanol titer in E. coli, this study had
findings of broader relevance across synthetic biology applications, such as the importance of sequencing checks on plasmids in
production strains as well as in cloning strains, and the critical need for more accurate protein expression predictive tools.
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Learn

for DuPont’s 1,3-propanediol pathway.” The need for these
Herculean efforts represents a significant bottleneck in the

Ithough biobased chemicals represent an appealing and

more sustainable alternative to traditional petrochemicals,
their widespread adoption has been partially stymied by the
limited efficacy of strain development. Historically, strain
development has not been a wholly systematic enterprise;
instead, genes, their expression levels, and the chassis organism
itself have often been tested on a trial-and-error basis, typically
informed by biochemical intuition, in order to eventually settle
on a strain with production metrics suitable for scaleup. This
work typically takes millions of dollars and 3—10 years to

biobased chemical production pipeline. However, the advent of
exponentially improving capabilities in DNA synthesis, genome
editing, and high-throughput screening coupled with machine-
learning methods opens the door to disruptive new approaches
to metabolic engineering.3_6 These new approaches call for a
systematic, product-independent metabolic engineering strat-

complete: it took 150 person-years of effort to express the 16-
enzyme artemisinin pathway' and 375 person-years of effort
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Figure 1. Key metabolic pathways (A) and Cycle 1 design strategies (B) considered for dodecanol biosynthesis in this study. Color coding of
enzymes is the same in (A) and (B). Panel (B) shows the combinatorial strategy for 36 Cycle 1 plasmids, all of which have a p15A origin and Py,
promoter for a single operon; SBOL Visual'* symbols are used to represent origins of replication, promoters, and RBSs. The constructs differ by the
predicted strength of RBSs (Low, Medium, or High) and the choice of acyl-ACP or acyl-CoA reductase. The host strain in all cases was E. coli
MG1655 AfadE. Abbreviated gene names include fatB (representing UcFatBl), 2507 (representing Maqu_2507), and 2220 (representing

Magqu_2220).

egy that leverages engineering principles. One of those
engineering principles is the Design—Build—Test—Learn
(DBTL) cycle—a loop used recursively to obtain a design
that satisfies the desired specifications. The DBTL cycle
represents a framework that helps systematize metabolic
engineering and increase its efficacy and generalizability. In
this work, we aim to systematically optimize 1-dodecanol
production in E. coli by performing two DBTL cycles that
leverage proteomic data in an attempt to more efficiently guide
the strain development process.

Like other medium-chain fatty alcohols, dodecanol is used in
a number of commercial applications, including detergents,
emulsifiers, lubricants, and cosmetics. The most straightfor-
ward way to produce dodecanol biochemically is by reduction
of the C,, fatty acid, lauric acid, or its ACP (acyl carrier
protein) or CoA (coenzyme A) derivatives. Figure 1A displays
four enzymes (denoted as A, B, C, D) relevant to making fatty
alcohols from fatty acids, or more specifically, from fatty acyl-
ACPs or fatty acyl-CoAs.” Although technically one could
bypass the thioesterase (A) and acyl-CoA synthetase (B) steps,
this would lead to fatty alcohols with a chain-length
distribution similar to that of the native fatty acids of the
host organism, which in E. coli would typically maximize at Cq
or Cig not Cj,. A thioesterase with a preference for C,, acyl-

ACPs, such as UcFatBl (or BTE) from Umbellularia
californica, has been shown to bias E. coli fatty alcohol
production to Cj,.*” Furthermore, acyl-ACP thioesterases
have also been shown to effectively deregulate fatty acid
production by hydrolyzing acyl-ACPs, which normally
stringently regulate acetyl-CoA carboxylase and other key
enzymes involved in bacterial fatty acid biosynthesis (ref 7 and
references therein). This deregulation of fatty acid biosynthesis
leads to markedly increased fatty acid titers. After release of C,,
fatty acids by the thioesterase, the fatty acids should be
activated as acyl-CoAs to make them appropriate substrates for
reduction to fatty alcohols; this reaction is catalyzed by an acyl-
CoA synthetase (B), which occurs as FadD in E. coli. Several
enzymes (C, in Figure 1) have been shown to reduce acyl-
CoAs to fatty aldehydes (eg, Acrl from Acinetobacter
calcoaceticus or Orfl594 from Synechococcus elongatus PCC
7942)'%"" or directly to fatty alcohols (e, Maqu_2220 and
Maqu_2507 from Marinobacter aquaeolei VT8)."” Finally, for
acyl-CoA reductases that produce fatty aldehydes, an aldehyde
reductase (D) is needed to produce the fatty alcohol; one such
enzyme is YjgB from E. coli, which has been shown to be
effective at this reduction."

Over the past decade, a number of studies have reported n-
fatty alcohol production in E. coli, including Cj, and Cy,
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Figure 2. Cycle 1 results for alcohols and targeted proteomics, as well as predicted RBS strength. Means of dodecanol (light gray) and total
alcohols (dark gray) are plotted as bars and error bars represent one standard deviation (n is typically 3 or S, and in rare cases 2, biological
replicates). Strain names are shown for strains C1—1 to C1—36, but the “C1” prefix has been omitted for brevity. The acyl-ACP/acyl-CoA
reductase used in the strains is indicated above the histogram. The upper heat map represents targeted proteomic results observed for pathway
enzymes, where the color scale represents normalization to the highest value for each protein. The lower heat map represents predicted Translation
Initiation Rates (TIR) for RBSs, with the color scale normalized to the highest value for each protein.

alcohols (e.g, refs 8, 9, 13, 15—18). These studies have used
various combinations of the enzymes depicted in Figure 1,
among others. Overall, the exploration of combinations of
specific enzymes and modulation of their strength of
expression (via plasmid or chromosomal copy number,
promoter strength, or RBS strength) has thus far been limited
to a relatively small number; typically, fewer than 10 or 15
strains in a study were compared side-by-side for medium-
chain fatty alcohol production. Nonetheless, these studies have
clearly demonstrated that modulation of these factors can be
very important for fatty alcohol production.

In this study, we aimed to leverage the DBTL cycle and
make a more systematic assessment of various enzyme
combinations and expression strength to optimize E. coli for
dodecanol production. We report on implementation of two
DBTL cycles to optimize dodecanol production from glucose
using 60 engineered E. coli MG16SS strains. The first DBTL
cycle employed a simple strategy to learn efficiently from a
relatively small number of strains (36), wherein only the choice
of RBSs and an acyl-ACP/acyl-CoA reductase were modulated
in a single pathway operon including genes encoding a
thioesterase (UcFatB1), an acyl-ACP/acyl-CoA reductase, and
an acyl-CoA synthetase (FadD) (Figure 1B). Measured
variables included dodecanol and all proteins in the engineered
pathway, which allowed for assessment of the accuracy of RBS
strength calculation and the relationship of dodecanol titer to
the ensemble composition of pathway proteins. We used the
data produced in the first DBTL cycle to train several machine-
learning algorithms and to suggest protein profiles for the
second DBTL cycle that should increase production. These
strategies resulted in a 21% increase in dodecanol titer (up to

0.83 + 0.125 g/L) in Cycle 2. Beyond specific lessons learned
about optimizing dodecanol titer in E. coli, this study produced
findings of broader relevance across synthetic biology
applications, such as the importance of sequencing checks on
plasmids in production strains as well as in cloning strains, and
the critical need for more accurate protein expression
predictive tools.

B RESULTS AND DISCUSSION

Cycle 1 Design, Build, And Test: Relationships among
Fatty Alcohol Titer, Engineered Pathway Proteins, and
RBS Strength. As discussed above, the design strategy for the
36 Cycle-1 strains was combinatorial and modulated between
use of three acyl-CoA/acyl-ACP reductases (Maqu_2507,
Maqu_2220, or Acrl) as well as different RBS strengths,
determined with RBS calculation software,"*™*' for the
pathway proteins (Figure 1B). The aim of the design was to
have a small number of variables, yet exert sufficient control
over key enzymes catalyzing the conversion of acyl-ACPs to
dodecanol to effectively inform the machine-learning algo-
rithms.

Certain findings were clear from Cycle 1 regarding the
effects of acyl-CoA/acyl-ACP reductases on fatty alcohol titer
(Figure 2): (1) the Maqu_2507 reductase performed much
better than the other reductases tested with respect to
dodecanol titer, and (2) the Maqu_2220 reductase performed
the best with regard to total fatty alcohol titer, but not
dodecanol titer. Nine of the 12 strains expressing Maqu_2507
(strains C1—1 to C1—12) had dodecanol titers of 0.47 to 0.68
g/L, which were far higher than titers for all 21 strains
expressing Maqu_2220 and Acrl (Figure 2). Some of these
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Figure 3. Scatterplots of targeted proteomics results for four pathway proteins (Maqu_2507, Maqu_2220, UcFatB1, and FadD) vs dodecanol titer
and predicted RBS strength for combined Cycle 1 and Cycle 2 strains. Reductases are color-coded in plots for UcFatB1 and FadD. The highlighted
C1-9 data points in the FadD vs dodecanol plot are discussed in the text. See Figure 1B for an illustration of the different predicted RBS strengths

used in Cycle 1 for each of the pathway enzymes shown.

Maqu_2507 strains, such as C1—11, had both high dodecanol
titers and a high proportion of dodecanol relative to total
alcohols (e.g, ~79% for strain C1—11). In contrast, dodecanol
titers never exceeded 0.15 g/L in Maqu_2220-expressing
strains (C1—13 to —19 and C1-31 to —34), however, total
alcohol titers reached ~1.4 g/L (strain C1—18) and were the
highest values observed in the study. Strains expressing the
Acrl acyl-CoA reductase in combination with the YjgB
aldehyde reductase (C1-21 to —30, C1-3S to —36) had
uniformly low alcohol titers, with only one strain exceeding
0.075 g/L dodecanol and 0.26 g/L total alcohols. Thus, the
combination of the UcFatB1 thioesterase, which has been
documented to preferentially hydrolyze C,,-acyl-ACP thio-
esters,”” and the Maqu_2507 reductase, was the most favorable
with respect to absolute and relative dodecanol titer. A possible
explanation for relatively high total alcohol titers but low
dodecanol titers in Maqu_2220-expressing strains relates to
the relative activities of UcFatBl, Maqu 2220, and
Maqu_2507 on acyl-ACPs in E. coli. If Maqu_2220 were as
catalytically effective with acyl-ACPs as with acyl-CoAs, which
is supported by in vitro studies,” and also competed effectively
with UcFatBl for acyl-ACPs (Figure 1A), then strains
expressing Maqu_2220 would be more likely to have typical
fatty acid chain lengths (Cy Ci5) than Cy, as fatty alcohol
precursors. Furthermore, if Maqu_2507 acted more effectively
on acyl-CoAs than acyl-ACPs, and consequently did not

compete well with UcFatB1 for acyl-ACPs, then it would allow
for more effective acyl chain truncation at C,, by the
thioesterase.

Overall, there were no easily discernible univariate relation-
ships between dodecanol titer and observed amounts of the
various pathway proteins (Figure 2). For example, just
expressing more of UcFatBl, the acyl-CoA/acyl-ACP reduc-
tase (Acrl, Maqu_2220, or Maqu_2507), and/or FadD did
not result in higher alcohol titer. Scatterplots of dodecanol
concentrations vs pathway-protein amounts (Figure 3) reflect
generally poor linear relationships, with the exception of
dodecanol vs Maqu_2220, which did appear to be positively
correlated (* = 0.60, p < 5 X 107""). An interesting trend was
observed between FadD and dodecanol, where almost all
dodecanol titers greater than 0.2 g/L were associated with
relatively low FadD amounts. The unexplained exception to
this trend was strain C1—9 (duplicate samples highlighted in
Figure 3). The general trend of higher production with lower
FadD could be explained by toxicity associated with fadD
expression, which is reflected in a moderately strong
correlation between FadD and glucose in the spent growth
medium (* = 0.65, p < 2 X 1072°) (Figure S1). As additional
evidence that fadD expression was associated with toxicity, it is
noteworthy that the three strains that could not be built out of
the 36 designed Cycle 1 strains (C1—14, —17, and —20) all
included the high-strength RBS for fadD and contained
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Figure 4. Cycle 2 design strategies for 14 Maqu_2507-expressing strains and the proteomic targets specified by models for dodecanol optimization.
In the schematics for the four strategies shown, red is used to highlight variables that have been changed from the Cycle 1 base strain (C1—11 or
C1-8). SBOL Visual symbols are used to represent origins of replication, promoters, and RBSs. Tabular information indicates targeted pathway
protein expression levels relative to the base strain, along with corresponding dodecanol titers predicted by the four regressor models and ensemble
model used. The protein highlighted in red was the primary target for the design strategy. Weight factors in the Ensemble model for the Random
Forest, Polynomial Regressor, Neural Regressor, and TPOT models were, respectively, 0.352, 0.208, 0.260, and 0.180. Dodecanol titers for the two
base strains, C1—11 and C1-38, were 0.61 + 0.074 and 0.68 + 0.092 g/L, respectively. Protein amounts for the base strains can be found in the

EDD (Experiment Data Depot) database for this study.

mutations either in this RBS or in the fadD gene itself; further,
in a preliminary single-gene construct (C1-E7) containing the
high-strength RBS for fadD, the fadD gene was missing entirely
(Table S1). Note that historical evidence that fadD over-
expression could be toxic to strain MG1655° prompted us to
include a “low-strength” RBS for fadD in Cycle 1 Design
(Figure 1B). In light of the FadD-dodecanol trend, a similar
but less pronounced relationship was observed between
UcFatB1 and dodecanol (Figure 3). Here, too, a trend of
increasing dodecanol titer with decreasing UcFatB1 was clear.
It is possible that the thioesterase-catalyzed truncation of fatty
acids at Cy, and resultant skewing of phospholipid fatty acid
chain-length distributions in the cell membrane created stress
in the E. coli host.

Beyond the lack of strong positive univariate correlations
between dodecanol concentrations and pathway protein
amounts, there were also no strong correlations between
observed pathway protein amounts and predicted expression
based on RBS calculation software. This is apparent in a
qualitative sense in Figure 2, in which the heat map patterns
for observed and predicted protein expression differ substan-
tially. A more quantitative assessment is given in scatterplots of
observed pathway protein amounts vs predicted Translation
Initiation Rates (TIRs'”?°) (Figure 3) or EMOPEC
(Empirical Model and Oligos for Protein Expression Changes)
ratings’' (Figure S2). To more rigorously evaluate the
accuracy of RBS prediction software, we compared the
strength predictions against protein expression levels while
controlling for operon context and estimated plasmid copy
number using partial correlation analysis (Figure S3). Using
this analysis, it is possible to determine a correlation coeflicient
for two random variables while controlling for confounding
variables. In Figure S3, we plot the relationship between the

RBS strength and protein expression after controlling for the
confounding variables. These modified variables are called
“residuals”. The residual EMOPEC calculation results were
significantly correlated for 4 of 6 of the conditions tested and
the residual TIRs were significantly correlated in 5 of 6 cases
tested. However, the correlations, while significant, were
frequently weak (r < 0.5) or inverse to expectations (ie.,
with negative slope).

Cycle 1 Learn: Machine-Learning and Model Building
Based on Dodecanol and Pathway Protein Concen-
trations. Observed Cycle-1 pathway protein concentrations
and dodecanol titers were used to predict protein levels
expected to maximize dodecanol titer. The basic underlying
assumption is that the expression levels of the proteins in the
engineered pathway (e.g, UcFatBl, Maqu_ 2507, and FadD)
are sufficiently determinative of final production to guide
metabolic engineering efforts, as has been shown previously for
certain isoprenoid pathways, where proteomics-based modu-
lation of a heterologous mevalonate pathway resulted in
enhanced product titers.”* For Cycle 1 Learn, predictions were
segregated by the acyl-CoA/acyl-ACP reductase used and all
replicates of all strains corresponding to each reductase were
used as the training sets for modeling (ie, data for 48
replicates for Maqu_ 2507 and 24 replicates for Maqu_2220).
Four machine-learning regression approaches from the scikit-
learn library were applied to fit the data: (1) random forest,”
(2) polynomial, (3) multilayer perceptron, and (4) the TPOT
(Tree-Based Pipeline Optimization Tool) meta-learner.”**’
For additional details on the first three model implementa-
tions, see the relevant scikit-learn documentation.”® Each
model f; was evaluated using S-fold cross validation and scored
using the mean squared error between predicted and actual
production e,
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for this study.

Each model was chosen for its strengths in particular
applications. A model’s cross validation performance should be
highest when it is most useful in making predictions on the test
data set. The random forest algorithm is considered to perform
well across a range of problem types; however, it does not
extrapolate well.”” The multilayer perceptron can extrapolate,
but typically requires more data to fit its parameters than other
approaches. The polynomial regressor was chosen as an
informed expectation for the relationship between protein
concentration and dodecanol titer to be easily approximated by
a low-degree polynomial. The TPOT meta-learner is a meta-
learning algorithm that looks for the best cross-validation
performance over a range of models.”*”” More back%round on
the TPOT meta-learner can be found in Olson et al.”” and the
extensive information available in its online documentation. In
order to make use of the strengths of each model, a composite
ensemble model was created from a weighted sum of each of
the four models described above (see Methods section). The
ensemble model was searched for regions of the proteomic
space that would maximize dodecanol titer. To find the best
candidate protein amounts, the following optimization
problem is then solved,

argmax f, (p)
p

where f,(p) is the ensemble model that maps protein amount
to dodecanol titer. (Note that use of the term protein
“amount” here refers not to absolute concentration, which was
not measured with peptide standards, but rather to mass
spectral counts, which should be linearly related to
concentration in the observed range.) The problem is subject
to the conditions that the protein amount returned must be
positive for each element in the vector and no larger than 1.5
times the maximum observed amount for any given protein.
This optimization problem was solved using a differential
evolution optimizer implemented by scipy.’® The optimizer
attempts to maximize the likelihood of picking a good
candidate target in the next round. This is performed in an
iterative fashion, by picking one candidate at a time until the
desired number of strain predictions is reached. After a strain is
selected, a new constraint is added to the optimization
problem, preventing the next strain from being within a chosen

radius of the point, so as to promote diversity in suggested
protein profiles.

Pathway proteomic targets predicted by the models to
increase dodecanol titer are presented in tabular form for
Maqu_2507 strains (Figure 4) and for Maqu_ 2220 strains
(Figure 5). Proteomic targets were ranked based on probability
of success (as determined by the estimated likelihood of the
predicted strain exceeding the highest dodecanol titer observed
in Cycle 1; see Methods) and only the top 3 (Figure 4) or top
2 (Figure S) proteomic targets are presented. The Cycle-1
strains to be used as base strains for engineering to attain the
proteomic targets were primarily Cl1—11 for Maqu_2507
(Figure 4) and C1—32 for Maqu_2220 (Figure 5). These base
strains were chosen by finding a Cycle-1 strain that minimized
the Euclidean distance to each target in proteomic space.

Cycle 2 Design and Build: Strategies for Optimization
of Maqu_2507- and Maqu_2220-Expressing Strains
from Cycle 1. The models trained using Cycle 1 dodecanol
and proteomic data suggested different optimization strategies
for strains utilizing the Maqu_2507 and Maqu_2220
reductases. These design strategies, represented schematically
in Figures 4 and S, were attempts to address the key protein
expression targets specified by the models while still taking into
account that resource constraints only allowed for 24 total
strains in Cycle 2. Ideally, the design strategy for Cycle 2 would
have entailed using RBSs to modulate engineered pathway
protein expression toward the targets specified by the ensemble
models (i.e., the protein targets shown in the tables in Figures 4
and §). This approach would have been systematic and
consistent with the combinatorial RBS design used for the
Cycle-1 training set. We did employ an RBS-based strategy;
however, the lack of a strong correlation between our protein
expression data and predicted RBS strength (Figure 3)
presented a formidable challenge for designing Cycle-2 strains.
To compensate for this uncertainty, we adopted a strategy that
relied on making minimal changes to the dodecanol-pathway
operon and maximizing attempts at correct RBS selection. In
most cases, this meant that we only changed one RBS per
strain while keeping the other two RBSs constant from the
Cycle-1 base strain (i.e, C1—11, C1—8, or C1—32); further,
we devoted multiple strains to using different RBSs to hit the
same protein expression target. For example, strains C2—S5 to
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Figure 6. Cycle 2 results for alcohols and targeted proteomics. Means of dodecanol (light gray) and total alcohols (dark gray) are plotted as bars
and error bars represent one standard deviation. Strain names are shown on the x-axis for Cycle-2 strains C2—1 to C2—24 along with Cycle-1 base
strains C1—11 and C1—32 (these Cycle-1 strain results represent assays run concurrently with Cycle-2 strains). The acyl-ACP/acyl-CoA reductase
used in the strains is indicated above the histogram. An X on the histogram x-axis indicates that the strain could not be constructed (see Table S1
for details). The heat map construction was performed as in Figure 2.

C2—9 (Figure 4) were all devoted to selecting an RBS that
would enhance UcFatB1 expression 6.6- to 12-fold relative to
base strain Cl—11. As described below, we also used
alternative strategies in an attempt to meet ensemble model
protein targets, acknowledging that relying solely on RBS
modification could be risky.

In the case of the Maqu_2507 strains for Cycle 2 (Figure 4),
the top three dodecanol titers projected by the ensemble
model specified a large increase in thioesterase (UcFatB1)
expression (6.6- to 12-fold; Figure 4) and more modestly
enhanced levels of FadD and Maqu_ 2507 (1.1- to 1.5-fold)
relative to a high dodecanol-producing Cycle 1 strain (C1—11
or C1—8). Various design strategies (Figure 4) intended to
greatly enhance UcFatB1 expression included an RBS-based
strategy (strains C2—S5 to C2—9) of using stronger predicted
RBSs upstream of UcFatBl, and alternative strategies, such as
driving UcFatBl expression with a stronger promoter (T7
rather than P.) and using a higher copy-number origin of
replication (colE1 rather than pl5A).

Other strategies for Maqu_2507 strains based on metabolic
engineering precedents rather than model projections included
expressing transhydrogenases (PntAB or UdhA) to promote
cofactor balance, which might have been perturbed by high
fatty acid biosynthesis and corresponding consumption of
NADPH by the key enzyme FabG, or p-ketoacyl-ACP
reductase.”’ ** Such a combination of statistical methods
and pathway/host engineering precedent has been used
successfully in other DBTL studies to enhance flavonoid
production.’

For the Maqu_2220 strains in Cycle 2 (Figure S), the top
two dodecanol titers projected by the ensemble model
specified a substantial decrease in acyl-CoA synthetase
(FadD) expression (2.7- to 10-fold; Figure S) and somewhat
enhanced levels of UcFatBl (1.9- to 2.8-fold) relative to a
moderate dodecanol-producing Cycle 1 strain (C1—32).
Design strategies included using weaker predicted RBSs
upstream of fadD, in some cases with a higher copy-number
origin of replication (colEl rather than plSA) to account for
the possibility that the enhanced levels of UcFatB1 were also
important for predicted performance.

While the Build phase of Cycle 2 was straightforward in
principle, since we limited the changes from Cycle 1, in
practice, building some Cycle-2 constructs containing
Magqu_2507 was very problematic (Table S1). For example,
multiple deletions occurred in the plasmid for strain C2—6
after transformation into the MG1655 AfadE production host,
even though the plasmid sequence was error-free in the
DHIOB cloning strain. In the end, we were never able to
successfully construct strain C2—6. Similar problems occurred
after transformation of the strain C2—9 plasmid into the
production host, but eventually an error-free plasmid was
obtained after numerous attempts. It is intriguing for strains
C2—5 to C2—9 (Figure 4) that such different Build outcomes
occurred among plasmids with such similar composition
(differing only in the RBS for UcFatB1). It is also noteworthy
that such plasmid mutation problems occurred only with
Maqu_2507 strains and never with any Maqu_2220 strains.
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Cycle 2 Test and Learn: Strain Performance and
Predictability. Fatty alcohol and pathway protein concen-
trations for Cycle-2 strains are presented in Figure 6. The best
dodecanol-producing strain in Cycle 2, and in the entire study,
was C2—7, which produced 0.83 + 0.125 g/L of dodecanol (n
= 6), a 21% increase in titer relative to the Cycle-1 base strain
(C1-11; Figure 4); in different BioLector fermentation
batches with triplicates of both strains, strain C2—7 averaged
from 14 to 27% higher dodecanol titer than strain C1—11. The
fraction of dodecanol to total alcohols for strain C2—7 was
slightly better than that of its base strain (84.6% vs 79%). The
dodecanol titer of strain C2—7 was ~6.4-fold higher than the
best published titer for batch conditions with minimal medium,
~130 mg/ L,9 which was attained for a strain expressing similar

pathway genes (Maqu_ 2220, fadD, and two thioesterase genes,
including UcFatBI) but in a different configuration. However,
the titer of strain C2—7 was only approximately half of the
reported fed-batch titer of a strain expressing the same pathway
genes (Maqu_2507, fadD, and UcFatBl) in a different
configuration and with a different E. coli MG165S background
(e.g, using chromosomal integration of fadD and UcFatB1, and
with additional knockouts, such as AackA and Apta).16
Although the dodecanol titer of strain C2—7 (in batch) was
considerably lower than that in the fed-batch study of
Youngquist and co-workers, the productivity of C2—7 was 2-
to 3-fold higher.

For Cycle-2 strains containing Maqu_2507, the best
performing strain (C2—7) belonged to the tightly related

DOI: 10.1021/acssynbio.9b00020
ACS Synth. Biol. XXXX, XXX, XXX—XXX


http://dx.doi.org/10.1021/acssynbio.9b00020

ACS Synthetic Biology

Research Article

group C2—5 to C2—9. The design of these five strains was
directly based on the operon of strain C1—11, with an alternate
RBS in front of the gene encoding the UcFatB1 thioesterase
(Figure 4). As this set of strains represented the closest match
to the Cycle-1 Maqu_2507 constructs that served as the
training set for machine-learning algorithms (i.e., only one RBS
change), and also encompassed a broad range of dodecanol
titers (~0.1 to 0.83 g/L) and Build success/failure (discussed
above), we focus our discussion on these strains. While strains
C2—-5 to C2—-9 fell well short of the targeted UcFatBl
expression increase of 6.6—12-fold relative to the base strain
(C1—11), there was still a substantial increase in their
thioesterase expression (1.7- to 2.6-fold). Surprisingly, among
these strains, UcFatB1 expression was not positively correlated
with dodecanol titer; rather, it was inversely correlated (Figure
7). In contrast, FadD and Maqu 2507 expression were
strongly (positively) correlated with dodecanol titer (* values
of 0.83 and 0.94, respectively; Figure 7). As a related
observation, it is clear that an inverse polarity was occurring
in the 3-gene pathway operon, whereby increasing strength in
the RBS upstream of the first gene in the operon (UcFatB1)
was correlated with decreasing expression of the downstream
proteins FadD and Maqu_2507 (Figure S4). Thus, several
aspects of the results for strains C2—S5 to C2—9 were surprising
in light of overall Cycle 1 trends and model predictions, for
example: (a) the putatively toxic fadD was positively correlated
with dodecanol titer and (b) the model-promoted increase in
UcFatB1 expression was inversely correlated with dodecanol
titer. One possible reason that the results for this small group
of samples is not reflective of the more combinatorial space
encompassed in Cycle 1 is that samples C2—5 to C2—9
represent a relatively narrow proteomic space, and local trends
of the kind observed for strains C2—5 to C2—9 may have been
obscured by a broader data set in Cycle 1. Notably, the
addition of this small set of Cycle-2 strains (C2—S5 to C2—9)
to the original Cycle-1 training set for the machine-learning
algorithms produced very different recommendations for
protein profiles than those based solely on Cycle-1 data
(compare Table S2 to Figure 4), indicating that the algorithms
have not yet converged to a stable function relating protein
profiles to dodecanol production. This is not surprising given
the paucity of training data available in Cycle 1, and highlights
the need to include more training samples in order to reach
better predictions (Figure SS shows how the prediction error
decreases with the number of strains used for training).
Regardless of sources of uncertainty, the average error of the
ensemble model in predicting dodecanol titer was 0.25 g/L for
all Cycle-2 strains expressing Maqu 2507 (Figure 8). The
ensemble model predictions tended to cluster around a titer of
ca. 0.3 to 0.6 g/L for Cycle 2 strains, which is not surprising
since the titer range in the training set of Maqu_2507 strains
was similarly constrained. Specifically for the best-performing
strain (C2—7), the model prediction was 0.49 g/L. While
cross-validation results for the ensemble model are presented
in Figure 8, cross-validation results for each of the four
contributing models (random forest, polynomial, multilayer
perceptron, and TPOT) are presented in Figures S6, S7, S8,
and S9.

Cycle-2 strains expressing the Maqu_2220 reductase had
considerably lower titer than their Cycle-1 base strain, C1-32
(Figure 6). In these Cycle-2 strains, the design strategy
entailed a substantial (63% to 90%) decrease in FadD
expression (Figure 5); accordingly, actual FadD expression

decreased from 73 to 99% in strains C2—15, —16, —17, and
—19. However, surprisingly, decreasing the RBS for fadD,
which is the last gene in the operon, dramatically decreased the
expression of proteins encoded by the two upstream genes as
well (UcFatB1 and Maqu_2220) (Figure S10). This positive
polarity for RBS strength is the opposite of what we observed
for the Maqu_ 2507 constructs (Figure S4) and was
unexpected because polar effects are typically observed for
the first genes in an operon rather than the final one.
Ultimately, the decrease in expression of all three proteins in
the pathway operon, not just the targeted FadD, likely
contributed to a decrease in dodecanol production (in many
cases, dodecanol was not detected).

B CONCLUSIONS

In summary, although we met with some success in this study,
attaining a final dodecanol titer in Cycle 2 that is more than 6-
fold greater than previously reported batch values, we
encountered many challenges that detracted from a smooth
increase in production guided by the machine-learning
algorithms. While the details of these challenges are specific
to this study, the larger issues that they represent may be
widely applicable to other DBTL-based projects. These
challenges included the following: (1) a very limited ability
to predictably modulate protein expression with existing RBS
prediction software (Figures 3, S2, S3, and S11), which
severely constrained Design strategies; (2) nontarget effects of
pathway proteins at both the Build and Test levels (eg,
apparent FadD toxicity; Figures 3 and S1, Table S1), which
highlighted the importance of sequencing checks on plasmids
in production strains as well as in cloning strains; (3) whole-
operonic effects of changing a single RBS (e.g,, polarity effects,
Figures S4 and S10); (4) the masking of local data trends in
the full data space (eg, comparing Figure 7 and Figure 3)
when using training sets of closely related constructs instead of
more heterogeneous and combinatorial constructs; and (S5) the
number of data points for training machine-learning algorithms
is critical (Figure SS).

While there will always be a tension between relying on
machine-learning models and constructing training data sets of
sufficient scope to productively inform the models, carefully
constructing those data sets can have a substantial impact on
the performance of the models. In our case, expanding the data
set to include a time course instead of just an end point might
have allowed us to detect some of the dynamics of protein
regulation that would have given us more confidence in these
measurements, which in turn would have led to more accurate
models and predictions without the construction of additional
strains. Further, expanding our proteomic targets to include
key enzymes in glycolysis and fatty acid biosynthesis could
have yielded more systemic information on carbon flow
through our entire pathway and would have given us a wider
range of parameters for optimization. In addition, shotgun
proteomic analysis could have complemented targeted
proteomic analysis and might have provided more information
on the functional proteome and, more generally, on sources of
stress in the various engineered strains. Other changes in
approach could also be beneficial. For example, while DNA
construction costs are still limiting, cost-effectiveness could be
boosted by using interference mechanisms (CRISPRi or RNA
silencing). Transfer learning techniques®* could be of great use
here, as well. In any case, the observation that average
prediction error decreased with increasing training set size
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(Figure SS) suggests that larger data set sizes would likely have
improved model performance, enabling a more reliable test of
our hypothesis that product titer can be predicted (or
approximated) based upon pathway-protein expression.

In any global optimization, there will be a trade-off between
exploiting what is known about a fitness landscape and
exploring the larger space of possibilities. In this study, we
completed two DBTL cycles to improve dodecanol titer, which
organically split this study into an exploration-based
combinatorial Design approach for Cycle 1 (Figure 1B) and
an exploitative Design approach for Cycle 2 (Figures 4 and $).
Ideally, this DBTL process would be repeated a number of
times, which would skew the relative weights of exploration vs
exploitation in each subsequent iteration, with increasing
weight being given to exploitation in later cycles. In this study,
our fully exploitative Learn and Design approach to Cycle 2
(for Maqu_2507) targeted a very narrow proteomic space of
increasing FatB 6.6- to 12-fold (Figure 4). Although a Cycle-2
strain did attain an improved dodecanol titer (21% increase),
Cycle 2 data (eg, Figure 7, 8) suggests that the ensemble
model did not capture the system dynamics well. Presumably,
this is at least partially a result of sources of uncertainty
discussed earlier, including a relatively small sample training
set. In hindsight, it may have been preferable to give greater
weight to exploration in our strain-picking algorithm, especially
with a limited number of DBTL cycles, and dedicate some
Cycle-2 strains to exploring underdetermined proteomic
regions of our ensemble model. We could, for example, have
used cross validation to explore parameter sensitivity in titer
prediction (e.g, determining which target proteins were
associated with the largest uncertainty in predictions). Overall,
this study highlights the challenges of determining the
appropriate balance between contrasting approaches, such as
exploitation vs exploration, and sample number vs machine-
learning accuracy, which are going to be key parameters for
optimizing machine learning and leveraging high-throughput
DBTL systems for synthetic biology in the future.

Although the observed ~20% increase in dodecanol titer in
Cycle 2 was not a transformational result, comparable increases
compounded over successive iterations of the DBTL cycle
could lead to substantial gains in production: ~250% for S
cycles (1.2%) and ~620% for 10 cycles (1.2'°). For context, an
800% increase in production would approach 100% of
maximum theoretical yield for dodecanol from glucose. We
expect that exponential increases in our capability to synthesize
DNA and characterize phenotype will make this scenario of
inexpensive and fast DBTL cycles a reality in the near future.
This approach will then provide a technique that can be
applied systematically to any molecule, pathway, and host,
without the need for an encyclopedic knowledge of its
metabolism.

B METHODS

Plasmid and Strain Construction. Level 0 Constructs
and Single-ORF Expression Constructs. Design and Build
activities were coordinated and facilitated with j5*° DNA
assembly design automation software and DeviceEditor’® web-
based bioCAD software. The DNA fragments for Level 0
constructs (used to build Level 1 constructs) and single-ORF
expression constructs (for proteomic method development)
were amplified using QS Hot Start High Fidelity 2X Master
Mix (NEB, Ipswich, MA): 50-uL PCR reactions consisted of
0.5 uL (S0 uM) of each forward and reverse primer, 4 uL of

template (S ng/uL), 25 pL of QS High Fidelity 2X Master
Mix, and 20 uL reagent water. The following touchdown PCR
thermocycling conditions were used: 98 °C for 30 s, then 10
cycles of {98 °C for 10 s, annealing at specified temperature for
30 s with a decrease in annealing temperature of 0.5 °C per
cycle, 72 °C for 20 s/kb}, then 25 cycles of {98 °C for 10 s,
annealing at the specified temperature for 30 s, 72 °C for 20 s/
kb}, and final extension at 72 °C for 2 min. Following PCR
amplification, residual (methylated) DNA template in each
PCR reaction was Dpnl digested and purified using a NIMBUS
size selection robot (Hamilton, Reno, NV). Gel purified DNA
fragments were cleaned up with AMPure magnetic beads
(NEB) to remove the buffer that was used for elution by the
NIMBUS robot; this step increased the DNA concentration by
eluting in less reagent water to improve the Gibson assembly
efficiency. Gibson assembly’’ was performed by mixing the
DNA parts in an equimolar ratio, as specified in Table S3. Ten
uL of Gibson assembly reaction consisted of 5 yL of Gibson
Mix (NEB), an equimolar ratio of DNA parts, and reagent
water, and was incubated at 50 °C for 1 h. Five uL of Gibson
assembly reaction was transformed into chemically competent
DHI10B cells (Invitrogen, Carlsbad, CA). Eight colonies per
construct were selected and grown overnight in 1 mL lysogeny
broth (LB) with the appropriate antibiotic in a 96-well plate.
Cell cultures were used for DNA sequencing on a MiSeq
system (Illumina, Inc., San Diego, CA) for sequence
verification, as described elsewhere.*® Sequence-verified
colonies from each Level 0 construct were further used for
building Level 1 constructs. Single-ORF constructs were
transformed into electrocompetent MG1655 AfadE cells and
4 colonies per construct were selected for MiSeq sequencing.
Sequence-verified colonies from each expression construct
were used for proteomics analysis. Detailed listings of
oligonucleotides, templates, and PCR conditions are given in
Table S3.

Level 1 Constructs for Dodecanol Production. Level 1
constructs were built by digesting Level 0 constructs with the
Type II endonuclease Bsal and ligating them as specified in
Tables S4A and S4B in a 10-uL Golden-Gate assembly
reaction,””*’ which consisted of equimolar DNA parts, 5 uL
Golden-Gate mix (NEB), and reagent water. Reactions were
then incubated at 37 °C for 1 h. Five yL of the Golden-Gate
assembly was used for transformation into chemically
competent DH10B cells. Eight colonies per construct were
selected and grown overnight in 1 mL of LB with kanamycin in
a 96-well plate. Cell cultures were used for DNA sequencing
on a MiSeq system for sequence verification, as described
elsewhere.”

Sequence-verified colonies from each Level 1 construct were
grown in a 10-mL culture and mini-prepped (Qiagen, Hilden,
Germany) for plasmid isolation. Plasmids were transformed
into electrocompetent MG1655 AfadE cells (the production
host for dodecanol). Differences between transformation
results in the host strain versus the DHIOB cloning strain
were observed, presumably due to biological instability or
toxicity (see text). Some of the Level 1 constructs that were
sequence-verified in DHI10B cells were found to have
mutations in MG1655 AfadE cells. Although the Level 1
constructs were sequence-verified in the cloning strain, after
transforming into the host strain, 8 colonies were selected
again for sequencing on the MiSeq system.

A complete list of Level 0 and Level 1 plasmids and strains is
provided in Table SS. Strains, plasmids, and their associated
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information from Table S$ are available in the public instance
of the JBEI registry”" (https://public-registry.jbei.org/folders/
389).

Production Runs in a BioLector Microbioreactor.
Plasmids were transformed into the production strain, E. coli
MG1655 AfadE, and colonies were picked, grown overnight in
LB at 37 °C, and the plasmids were resequenced with a MiSeq
system (Illumina). In preparation for the final production run,
strains were acclimated overnight in M9-MOPS growth
medium with 2% glucose at 30 °C. The dodecanol production
experiments were run in triplicate on a BioLector micro-
bioreactor (m2p-labs, Hauppauge, NY) with a 48-well flat-
bottom plate. The cultures were inoculated with 50 uL of
stationary-phase preculture, grown in M9-MOPS medium with
2% glucose, and were induced with 0.1 mM IPTG at the start
of the incubation period. The total culture volume was 1 mL,
with a 200 uL overlay of dodecane spiked with S00 g (2.5 pg/
uL) of the internal standard for fatty alcohol and aldehyde
analysis, 1-dodecan-d,s-ol (98 atom % D; Sigma-Aldrich, St.
Louis, MO). The BioLector was run at 1000 rpm at 30 °C and
ambient chamber pressure. The total time for each run was 27
h, at which time the cultures were harvested by centrifugation
at 20 817g for 4 min at 4 °C. The dodecane overlay was used
for fatty alcohol and aldehyde analysis, the supernatant was
sampled for glucose and short-chain acids (e.g, acetate,
pyruvate), and the cell pellet was used for targeted proteomics
and selected metabolites. As an additional quality control
measure, a long-chain alcohol-producing strain, JBEI-9017,
studied by Haushalter et al.'” was incubated in replicate in each
BioLector batch and was subjected to most of the analyses
described below.

Fatty Alcohols by Gas Chromatography—Mass Spec-
trometry (GC—MS). Dodecanol and other fatty alcohols
captured in the dodecane overlay were analyzed by GC—MS.
Before analysis, 1 uL of the dodecane overlay was diluted 100-
fold with hexane. Electron ionization (EI) GC—MS analyses
with a quadrupole mass spectrometer were performed with a
model 7890A GC (Agilent Technologies, Santa Clara, CA)
coupled to a HP-Sms fused silica capillary column (30-m
length, 0.25-mm inner diameter, 0.25-um film thickness;
Agilent) and an HP $5975C series mass selective detector
(Agilent); 1 uL injections were performed by a model 7683B
autosampler (Agilent). The GC oven was programmed from
40 °C (held for 3 min) to 295 °C at 15 °C/min; the injection
port temperature was 250 °C, and the transfer line temperature
was 280 °C. The carrier gas, ultra high-purity helium, flowed at
a constant rate of 1 mL/min. Injections were splitless, with the
split turned on after 1 min. For full-scan data acquisition, the
MS scanned from 50 to 600 atomic mass units at a rate of 2
scans per s. Internal standard quantification was performed.
The internal standard, perdeuterated dodecanol, or 1-dodecan-
dys-ol (98 atom % D; Sigma-Aldrich), was spiked into the
dodecane overlay such that a 1:100 dilution in hexane for GC—
MS analysis would result in a 25 ng/uL concentration in the
diluted extract. GC—MS standards (C,,, Cy4, Ci Cyg fatty
alcohols) at three concentration levels (S, 20, and 50 ng/uL)
all contained 25 ng/uL of the deuterated internal standard.

Glucose and Short-Chain Organic Acids by High-
Performance Liquid Chromatography (HPLC). Glucose
and organic acids from cell cultures were measured by an 1100
Series HPLC system equipped with a 1200 Series refractive
index detector (RID) (Agilent) and Aminex HPX-87H ion-
exclusion column (300 mm length, 7.8 mm internal diameter;

Bio-Rad Laboratories, Inc,, Hercules, CA). One hundred-
microliter aliquots of cell cultures were removed at various
time points during production and filtered through a spin-
cartridge with a 0.45-ym nylon membrane, and 5 pL of the
filtrate was eluted through the column at 50 °C with 4 mM
sulfuric acid at a flow rate of 600 xL/min for 25 min.
Metabolites were quantified by using external standard
calibration with authentic standards.

Targeted Proteomics by LC—MS/MS. Proteomic
Sample Preparation. Cell lysis and protein precipitation
were achieved by using a chloroform—methanol extraction as
previously described.*” The pellets were resuspended in 200
uL methanol. 50 uL chloroform and 150 uL water were added
to each well The samples were centrifuged for 1 min at
maximum speed to induce the phase separation. The methanol
and water layers were removed, then 300 L methanol was
added to each well. The samples were centrifuged for 1 min at
maximum speed, then the chloroform and methanol layers
were removed and the protein pellets were dried at room
temperature for 5 min prior to resuspension in 100 mM
ammonium bicarbonate with 20% methanol. The protein
concentration of the samples was measured using the DC
Protein Assay Kit (Bio-Rad, Hercules, CA) with bovine serum
albumin used as a standard. 200 ug of protein from each
sample was reduced by adding tris 2-(carboxyethyl)phosphine
(TCEP) to a final concentration of S mM. Iodoacetamide was
added to a final concentration of 10 mM to alkylate the protein
samples. Trypsin was added at a ratio of 1:50 trypsin:total
protein, and the samples were incubated for 16 h at 37 °C.

Liquid Chromatography—Mass Spectrometry. Peptides
were analyzed using an Agilent 1290 liquid chromatography
system coupled to an Agilent 6460 QQQ mass spectrometer
(Agilent Technologies, Santa Clara, CA). The peptide samples
(20 pg loaded on column) were separated on an Ascentis
Express Peptide ES-C18 column (2.7 ym particle size, 160 A
pore size, 5 cm length X 2.1 mm i.d., coupled to a S mm X 2.1
mm id. guard column with similar particle and pore size;
Sigma-Aldrich, St. Louis, MO), with the system operating at a
flow rate of 0.400 mL/min and the column compartment at 60
°C. Peptides were eluted into the mass spectrometer via a
gradient with an initial starting condition of 95% Buffer A
(99.9% water, 0.1% formic acid) and 5% Buffer B (99.9%
acetonitrile, 0.1% formic acid). Buffer B was held at 5% for 0.2
min, then increased to 35% B over 5.5 min. Buffer B was
further increased to 80% of 0.3 min, where it was held for 2
min, then ramped back down to 5% B over 0.5 min, where it
was held for 1.5 min to re-equilibrate the column to the initial
starting condition. The data were acquired using Agilent
MassHunter, version B.08.00 and the data files were processed
by using Skyline version 4.1 (MacCoss Lab, University of
Washington, Seattle, WA) with mProphet to refine peak
quantification.

In Silico Selected Reaction Monitoring (SRM) Methods
Selection. Skyline software was used for SRM screening, peak
selection, method development, analysis, and data processing
purposes. Selection criteria excluded peptides with Met/Cys
residues, tryptic peptides followed by additional cut sites (KK/
RR), and peptides with proline adjacent to K/R cut sites. All
possible doubly charged peptides were screened for y-series
ions to establish the peptide identity and the most sensitive
transitions. Methods generated by Skyline were set for Agilent
6460QQQ and included instrument-specific collision energies
that were exported to an instrument method file using a
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template file that contained LC conditions as described above.
To facilitate confident peptide selection, each target protein
was highly overproduced in a separate E. coli strain and tested
with the in silico SRM predictions from Skyline. Acquired SRM
data were imported into Skyline, where peptides were manually
curated into a subset meeting the criteria described above.
Skyline methods, which contain proteotypic peptides and SRM
information, are available from the Panorama knowledgebase43
located at https://panoramaweb.org/DBTL-ML-for-
dodencanol-production-in-e-coli.url. Protein quantification
was based on the summed peak areas of the transitions for
each peptide.

Fatty Aldehyde Analysis by Nanostructure-Initiator
Mass Spectrometry (NIMS). Dodecanal and other fatty
aldehydes captured in the dodecane overlay were analyzed
using oxime bioconjugate chemistry and Nanostructure-
Initiator Mass Spectrometry (NIMS). The synthesis and the
subsequent oxime derivatization reactions with the O-alkyloxy-
amine fluorous tag were carried out as reported elsewhere.**
Briefly, a 2 uL aliquot of the dodecane overlay was transferred
into a vial containing 6 yL of 100 mM glycine acetate, pH 1.3,
3 pL of ethanol, 1 uL of O-alkyloxyamine fluorous tag [10 mM
in 1:1 (v/v) water:methanol], and 0.13 uL of aniline. The
mixture was incubated at room temperature for 16 h before
NIMS analysis. For each sample, to 1 uL of the oxime reaction
mixture, 8 yL water, 1 yL ethanol and 0.01 uL formic acid
were added. Samples were printed onto a NIMS substrate
(NIMS substrates were processed as described elsewhere*)
using an ATS-100 acoustic transfer system (BioSera, San
Diego, CA) with a sample deposition volume of 10 nL.
Samples were printed in clusters of four replicates, with the
microarray spot pitch (center-to-center distance) set at 900
pum. MS-based imaging was performed using a 5800 MALDI
TOF/TOF (AB Sciex, Foster City, CA) mass spectrometer
with laser intensity of 6000 over a mass range of 500—4000 Da.
Each position accumulated 20 laser shots. The instrument was
controlled using the MALDI-MSI 4800 Imaging Tool using a
75 pm step size. Average ion intensity of the conjugated fatty
aldehydes were determined using the OMAAT tool.*®

Fatty Acid and Acyl-CoA Analysis by LC—MS. Liquid
chromatography separation conditions for fatty acyl-CoA
measurements were described previously by Goh et al*’
Fatty acid separation was conducted at 55 °C with a Kinetex
XB-C18 column (100 mm length, 3 mm internal diameter, 2.6
mm particle size; Phenomenex, Inc., Torrance, CA) using a
1200 Series Rapid Resolution HPLC (high-performance liquid
chromatography) system (Agilent Technologies, CA). The
mobile phase was composed of water (solvent A) and
methanol (solvent B) (HPLC grade, Honeywell Burdick &
Jackson, CA). One to two microliters of samples were injected
and separated with the following gradient: 60—98% B for 3.47
min, held at 98% B for 5.2 min, decreased to 60% B for 2.42
min, and held at 60% B for a further 2.78 min. The total
analysis run time was 13.87 min. A flow rate of 0.42 mL/min
was used throughout. The HPLC system was coupled to an
Agilent Technologies 6545 quadrupole time-of-flight mass
spectrometer (QTOF-MS). Electrospray ionization was
conducted in the negative ion mode (i.e, [M — H]™) via the
Agilent Jet Stream thermal gradient focusing technology, where
the sheath gas flow rate and temperature were set to 12 L/min
and 350 °C, respectively. Drying and nebulizing gases were set
to 10 L/min and 25 Ib/in% respectively, and a drying-gas
temperature of 300 °C was used throughout. The fragmentor,

skimmer, and OCT 1 RF Vpp voltages were set to 150, 50, and
170 V, respectively. Data acquisition and processing were
conducted via the Agilent MassHunter software package.

Ensemble Model Construction. Four machine-learning
models are used as an ensemble to improve prediction. The
ensemble model is defined by

4
£(p) =D wf(p)

i=1

The weights were determined from the vector of model
cross validation scores e using the equation

w = softmax(—ae)

where alpha is a parameter that determines how much to
weight differences in performance. In the extreme cases: a = 0
results in even weightings regardless of performance, and, for
large @ approaching infinity, the best performing model is
weighted as 1 while the rest of the weights are zero. So, for
small @, the composite model is an average of all four models
independent of performance, and for large a, only the best
performing model is used for prediction. The softmax function
is defined as

x
e

4 x
j
i=le

softmax(x) =

Note that, in the above notation, all operations on vectors are
performed element-wise. The composite model f,(p) repre-
sents the best estimated map from pathway protein levels to
dodecanol titer. This ensemble model was used to make all
predictions in both cycles of Learn.

Cross Validation of Machine-Learning Models. Each
individual model and the ensemble model were evaluated using
5-fold cross validation and the results were scored using the
mean squared error between predicted and actual production
of dodecanol. The results of this analysis are shown in Figure 8
(for the ensemble model) and Figures S6—S9.

Calculation of Success Probability of Designed
Strains. To guide the process of selecting which model-
recommended strains to construct in Cycle 2, a naive estimate
of the probability that a recommended strain would exceed the
maximum dodecanol titer observed in Cycle 1 was created.
This estimate is called the “success probability”. To find the
success probability estimate for a given strain prediction, the
mean, /4, and standard deviation, o, of the 5-fold cross validated
prediction error on the data set are first calculated. The model
error is assumed to be normally distributed about these
moments. If a strain is predicted to have dodecanol titer d and
the best observed strain has titer d, success probability is the
probability that the normal distribution N(u + d, o) takes a
value greater than d. Success probabilities were reported in
Figures 4 and S.

Partial Correlation Analysis. In order to evaluate the
accuracy of the RBS calculation software used in this study, a
partial correlation analysis was used to isolate the relationship
between predicted RBS strength and observed protein
expression for each protein in the engineered pathway. This
analysis controlled for multiple confounding variables,
including plasmid copy number and strength of the other
RBSs in the operon.

More formally, partial correlation analysis can determine the
correlation coefficient between random variables X and Y,
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while controlling for a set of n confounding variables Z = {Z,,
ws Z,}. Assume that we are working with a sample of m
realizations drawn from each random variable with the ith
realization denoted by x;, y, and z, respectively, with x;, )€ R
and z; € R". First, two linear regressions relating both the
independent and dependent variables independently to the set

of confounding variables Z are fit. This is realized mathemati-
cally with the equations

wy = argmin Z ((z, w) — %)

w i=1

wy = argmin Z (z;, w) — );)2

w i=1

Then, the residuals between the confounding variables and the
independent and dependent variables are calculated to control
for the influence of the confounding variables,

e, = {x — (z, w)IZ,
e = {yl - (zi) “6,) }1m:1

Now, the partial correlation coeflicient and associated p-
value are calculated simply by computing the Pearson
correlation between the residuals ¢, and e, Further details
are available elsewhere."”
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