203 research outputs found

    Olfaction Contributes to Pelagic Navigation in a Coastal Shark.

    Get PDF
    How animals navigate the constantly moving and visually uniform pelagic realm, often along straight paths between distant sites, is an enduring mystery. The mechanisms enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test whether olfaction contributes to pelagic navigation. Leopard sharks were captured alongshore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, following relatively straight paths that were significantly directed over spatial scales exceeding 1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following significantly more tortuous paths that approximated correlated random walks. These results held after swimming paths were adjusted for current drift. This is the first study to demonstrate experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by chemical gradients as has been hypothesized for birds. Given the similarities between the fluid three-dimensional chemical atmosphere and ocean, further research comparing swimming and flying animals may lead to a unifying paradigm explaining their extraordinary navigational abilities

    Increasing the bandwidth of coaxial aperture arrays in radar frequencies

    Get PDF
    Arrays of coaxial cavities in a silver slab are an angle-independent frequency-selective structure in the optical wavelengths. We show that understanding major resonant effects can achieve a similar structure in the radar frequencies. We use a biperiodic boundary integral method to explain the resonances. We suggest a geometrical evolution of the coaxial cavities that presents an enhanced bandwidth under oblique incidence in TM polarizatio

    Depth- and range-dependent variation in the performance of aquatic telemetry systems: Understanding and predicting the susceptibility of acoustic tag-receiver pairs to close proximity detection interference

    Get PDF
    BACKGROUND: Passive acoustic telemetry using coded transmitter tags and stationary receivers is a popular method for tracking movements of aquatic animals. Understanding the performance of these systems is important in array design and in analysis. Close proximity detection interference (CPDI) is a condition where receivers fail to reliably detect tag transmissions. CPDI generally occurs when the tag and receiver are near one another in acoustically reverberant settings. Here we confirm transmission multipaths reflected off the environment arriving at a receiver with sufficient delay relative to the direct signal cause CPDI. We propose a ray-propagation based model to estimate the arrival of energy via multipaths to predict CPDI occurrence, and we show how deeper deployments are particularly susceptible. METHODS: A series of experiments were designed to develop and validate our model. Deep (300 m) and shallow (25 m) ranging experiments were conducted using Vemco V13 acoustic tags and VR2-W receivers. Probabilistic modeling of hourly detections was used to estimate the average distance a tag could be detected. A mechanistic model for predicting the arrival time of multipaths was developed using parameters from these experiments to calculate the direct and multipath path lengths. This model was retroactively applied to the previous ranging experiments to validate CPDI observations. Two additional experiments were designed to validate predictions of CPDI with respect to combinations of deployment depth and distance. Playback of recorded tags in a tank environment was used to confirm multipaths arriving after the receiver\u27s blanking interval cause CPDI effects. RESULTS: Analysis of empirical data estimated the average maximum detection radius (AMDR), the farthest distance at which 95% of tag transmissions went undetected by receivers, was between 840 and 846 m for the deep ranging experiment across all factor permutations. From these results, CPDI was estimated within a 276.5 m radius of the receiver. These empirical estimations were consistent with mechanistic model predictions. CPDI affected detection at distances closer than 259-326 m from receivers. AMDR determined from the shallow ranging experiment was between 278 and 290 m with CPDI neither predicted nor observed. Results of validation experiments were consistent with mechanistic model predictions. Finally, we were able to predict detection/nondetection with 95.7% accuracy using the mechanistic model\u27s criterion when simulating transmissions with and without multipaths. DISCUSSION: Close proximity detection interference results from combinations of depth and distance that produce reflected signals arriving after a receiver\u27s blanking interval has ended. Deployment scenarios resulting in CPDI can be predicted with the proposed mechanistic model. For deeper deployments, sea-surface reflections can produce CPDI conditions, resulting in transmission rejection, regardless of the reflective properties of the seafloor

    Burn out and perceived quality of life in resident physician of maternal-child area

    Get PDF
    El síndrome de burnout es un trastorno tridimensional resultante del estrés laboral, caracterizado por Cansancio Emocional (AE), Despersonalización (DP) y Baja realización personal (RP);observado especialmente en trabajos que involucran el contacto con personas. Entre los médicos, los residentes constituyen una población especialmente vulnerable

    Scaling ozone responses of forest trees to the ecosystem level in a changing climate

    Full text link
    Many uncertainties remain regarding how climate change will alter the structure and function of forest ecosystems. At the Aspen FACE experiment in northern Wisconsin, we are attempting to understand how an aspen/birch/maple forest ecosystem responds to long-term exposure to elevated carbon dioxide (CO 2 ) and ozone (O 3 ), alone and in combination, from establishment onward. We examine how O 3 affects the flow of carbon through the ecosystem from the leaf level through to the roots and into the soil micro-organisms in present and future atmospheric CO 2 conditions. We provide evidence of adverse effects of O 3 , with or without co-occurring elevated CO 2 , that cascade through the entire ecosystem impacting complex trophic interactions and food webs on all three species in the study: trembling aspen ( Populus tremuloides Michx . ), paper birch ( Betula papyrifera Marsh), and sugar maple ( Acer saccharum Marsh). Interestingly, the negative effect of O 3 on the growth of sugar maple did not become evident until 3 years into the study. The negative effect of O 3 effect was most noticeable on paper birch trees growing under elevated CO 2 . Our results demonstrate the importance of long-term studies to detect subtle effects of atmospheric change and of the need for studies of interacting stresses whose responses could not be predicted by studies of single factors. In biologically complex forest ecosystems, effects at one scale can be very different from those at another scale. For scaling purposes, then, linking process with canopy level models is essential if O 3 impacts are to be accurately predicted. Finally, we describe how outputs from our long-term multispecies Aspen FACE experiment are being used to develop simple, coupled models to estimate productivity gain/loss from changing O 3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72464/1/j.1365-3040.2005.01362.x.pd

    A new approach to ticagrelor-based de-escalation of antiplatelet therapy after acute coronary syndrome. A rationale for a randomized, double-blind, placebo-controlled, investigator-initiated, multicenter clinical study

    Get PDF
    © 2021 Via Medica. This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license. https://creativecommons.org/licenses/by/4.0/The risk of ischemic events gradually decreases after acute coronary syndrome (ACS), reaching a stable level after 1 month, while the risk of bleeding remains steady during the whole period of dual antiplatelet treatment (DAPT). Several de-escalation strategies of antiplatelet treatment aiming to enhance safety of DAPT without depriving it of its efficacy have been evaluated so far. We hypothesized that reduction of the ticagrelor maintenance dose 1 month after ACS and its continuation until 12 months after ACS may improve adherence to antiplatelet treatment due to better tolerability compared with the standard dose of ticagrelor. Moreover, improved safety of treatment and preserved anti-ischemic benefit may also be expected with additional acetylsalicylic acid (ASA) withdrawal. To evaluate these hypotheses, we designed the Evaluating Safety and Efficacy of Two Ticagrelor-based De-escalation Antiplatelet Strategies in Acute Coronary Syndrome — a randomized clinical trial (ELECTRA-SIRIO 2), to assess the influence of ticagrelor dose reduction with or without continuation of ASA versus DAPT with standard dose ticagrelor in reducing clinically relevant bleeding and main-taining anti-ischemic efficacy in ACS patients. The study was designed as a phase III, randomized, multicenter, double-blind, investigator-initiated clinical study with a 12-month follow-up.Peer reviewedFinal Published versio
    corecore