15 research outputs found

    Population, Land Use and Deforestation in the Pan Amazon Basin: a Comparison of Brazil, Bolivia, Colombia, Ecuador, PerĂș and Venezuela

    Full text link
    This paper discusses the linkages between population change, land use, and deforestation in the Amazon regions of Brazil, Bolivia, Colombia, Ecuador, PerĂș, and Venezuela. We begin with a brief discussion of theories of population–environment linkages, and then focus on the case of deforestation in the PanAmazon. The core of the paper reviews available data on deforestation, population growth, migration and land use in order to see how well land cover change reflects demographic and agricultural change. The data indicate that population dynamics and net migration exhibit to deforestation in some states of the basin but not others. We then discuss other explanatory factors for deforestation, and find a close correspondence between land use and deforestation, which suggests that land use is loosely tied to demographic dynamics and mediates the influence of population on deforestation. We also consider national political economic contexts of Amazon change in the six countries, and find contrasting contexts, which also helps to explain the limited demographic-deforestation correspondence. The paper closes by noting general conclusions based on the data, topics in need of further research and recent policy proposals.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42720/1/10668_2003_Article_6977.pd

    Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource

    Full text link

    From the soil to the seeds: the long journey of nitrate in plants

    No full text
    Under temperate climates and in cultivated soils, nitrate is the most important source of nitrogen (N) available for crops and, before its reduction and assimilation into amino acids, must enter the root cells and then move in the whole plant. The aim of this review is to provide an overall picture of the numerous membrane proteins that achieve these processes by being localized in different compartments and in different tissues. Nitrate transporters (NRT) from the NRT1 and NRT2 families ensure the capacity of root cells to take up nitrate, through high- and low-affinity systems (HATS and LATS) depending on nitrate concentrations in the soil solution. Other members of the NRT1 family are involved subsequently in loading and unloading of nitrate to and from the xylem vessels, allowing its distribution to aerial organs or its remobilization from old leaves. Once in the cell, nitrate can be stored in the vacuole by passing through the tonoplast, a step that involves chloride channels (CLC) or a NRT2 member. Finally, with the exception of one NRT1 member, the transport of nitrite towards the chloroplast is still largely unknown. All these fluxes are controlled by key factors, the 'major tour operators' like the internal nutritional status of the plant but also by external abiotic factors.Julie Dechorgnat, Chi Tam Nguyen, Patrick Armengaud, Mathieu Jossier, Eugene Diatloff, Sophie Filleur, and Françoise Daniel-Vedel

    Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1.

    No full text
    In bread wheat (Triticum aestivum L.), the simultaneous improvement of both yield and grain protein is difficult because of the strong negative relationship between these two traits. However, some genotypes deviate positively from this relationship and this has been linked to their ability to take up nitrogen (N) during the post-flowering period, regardless of their N status at flowering. The physiological and genetic determinants of post-flowering N uptake relating to N satiety are poorly understood. This study uses semi-hydroponic culture of cv. RĂ©cital under controlled conditions to explore these controls. The first objective was to record the effects of contrasting N status at flowering on post-flowering nitrate (NO₃⁻) uptake under non-limiting NO₃⁻ conditions, while following the expression of key genes involved in NO₃⁻ uptake and assimilation. We found that post-flowering NO₃⁻ uptake was strongly influenced by plant N status at flowering during the first 300-400 degree-days after flowering, overlapping with a probable regulation of nitrate uptake exerted by N demand for growth. The uptake of NO₃⁻ correlated well with the expression of the gene TaNRT2.1, coding for a root NO₃⁻ transporter, which seems to play a major role in post-flowering NO₃⁻ uptake. These results provide a useful knowledge base for future investigation of genetic variability in post-flowering N uptake and may lead to concomitant gains in both grain yield and grain protein in wheat

    Nutritional regulation of ANRI and other root-expressed MADS-box genes in Arabidopsis thaliana.

    No full text
    The ANR1 MADS-box gene in Arabidopsis thaliana (L.) Heynh. has previously been identified as a key regulator of lateral root growth in response to signals from external nitrate (NO3−). We have used quantitative real-time PCR to investigate the responsiveness of ANR1 and 11 other root-expressed MADS-box genes to fluctuations in the supply of N, P and S. ANR1 expression in roots of hydroponically grown Arabidopsis plants was specifically regulated by changes in the N supply, being induced by N deprivation and rapidly repressed by N re-supply. This pattern of N responsiveness differs from the NO3− -inducibility of ANR1 previously observed in Arabidopsis root cultures [H.M. Zhang and B.G. Forde (1998) Science 279:407–409]. Seven of the other MADS-box genes responded to N in a manner similar to ANR1, but less strongly, while four (AGL12, AGL17, AGL18 and AGL79) were unaffected. Six of the N-regulated genes (ANR1, AGL14, AGL16, AGL19, SOC1 and AGL21) belong to just two clades within the type II MADS-box lineage, while the other two (AGL26 and AGL56) belong to the poorly characterized type I lineage. Only SOC1 was additionally found to respond to changes in the P and S supply, suggesting a possible role in a general response to nutrient stress. Studies with an ANR1 transposon-insertion mutant provided no evidence for regulatory interactions between ANR1 and the other root-expressed MADS-box genes. The implications of the current data for our understanding of the role of ANR1 and other MADS box genes in the nutritional regulation of lateral root growth are discussed
    corecore