10,176 research outputs found

    Reconstruction of cosmological initial conditions from galaxy redshift catalogues

    Full text link
    We present and test a new method for the reconstruction of cosmological initial conditions from a full-sky galaxy catalogue. This method, called ZTRACE, is based on a self-consistent solution of the growing mode of gravitational instabilities according to the Zel'dovich approximation and higher order in Lagrangian perturbation theory. Given the evolved redshift-space density field, smoothed on some scale, ZTRACE finds via an iterative procedure, an approximation to the initial density field for any given set of cosmological parameters; real-space densities and peculiar velocities are also reconstructed. The method is tested by applying it to N-body simulations of an Einstein-de Sitter and an open cold dark matter universe. It is shown that errors in the estimate of the density contrast dominate the noise of the reconstruction. As a consequence, the reconstruction of real space density and peculiar velocity fields using non-linear algorithms is little improved over those based on linear theory. The use of a mass-preserving adaptive smoothing, equivalent to a smoothing in Lagrangian space, allows an unbiased (although noisy) reconstruction of initial conditions, as long as the (linearly extrapolated) density contrast does not exceed unity. The probability distribution function of the initial conditions is recovered to high precision, even for Gaussian smoothing scales of ~ 5 Mpc/h, except for the tail at delta >~ 1. This result is insensitive to the assumptions of the background cosmology.Comment: 19 pages, MN style, 12 figures included, revised version. MNRAS, in pres

    Joint formation of bright quasars and elliptical galaxies in the young Universe

    Get PDF
    We show that the mass function of black holes expected from the past quasar activity (both visible and obscured) is consistent with the number of dormant black holes found in the bulges of nearby galaxies. The joint formation of quasars and bulges is addressed by means of an analytical model for galaxy formation, based on the hierarchical clustering of cold dark matter halos. The model is able to reproduce the main statistical properties of both populations under the hypotheses that (i) star formation and quasar shining follow an anti-hierarchical order, and (ii) galaxy morphology and final black hole mass are determined by the same physical process.Comment: 5 pages, 3 postscript figures included, proceedings of the IGRAP meeting "Clustering at high redshift", Marseille, June 199

    Josephson Vortex Qubit based on a Confocal Annular Josephson Junction

    Get PDF
    We report theoretical and experimental work on the development of a Josephson vortex qubit based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential with bistable states. This intrinsic vortex potential can be tuned by an externally applied magnetic field and tilted by a bias current. The two-state system is accurately modeled by a one-dimensional sine-Gordon like equation by means of which one can numerically calculate both the magnetic field needed to set the vortex in a given state as well as the vortex depinning currents. Experimental data taken at 4.2K on high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate the presence of a robust and finely tunable double-well potential for which reliable manipulation of the vortex state has been classically demonstrated. The vortex is prepared in a given potential by means of an externally applied magnetic field, while the state readout is accomplished by measuring the vortex-depinning current in a small magnetic field. Our proof of principle experiment convincingly demonstrates that the proposed vortex qubit based on CAJTJs is robust and workable.Comment: 20 pages, 11 figure

    Flux Flow Effects in Annular Josephson Tunnel Junctions

    Get PDF
    We investigate Josephson flux-flow in annular Josephson tunnel junctions (AJTJs) under the application of magnetic fields generating finite-voltage steps in their current-voltage characteristics. Experimental data are presented for confocal AJTJs which are the natural generalization of the well studied circular AJTJs for which flux flow effects have never been reported. Displaced linear slopes, Fiske step staircases and Eck steps were sequentially recorded at 4.2 K4.2\,K with high-quality Nb/Al-AlOx/Nb confocal AJTJs when increasing the strength of a uniform magnetic field applied in the plane of the junction. Their amplitude was found to strongly depend not only on the strength, but also on the orientation, of the external field. Extensive numerical simulations based on a phenomenological sine-Gordon model developed for confocal AJTJs were carried out to disclose the basic flux-flow mechanism responsible for the appearance of magnetically induced steps and to elucidate the role of several critical parameters, namely, the field orientation, the system loss and the annulus eccentricity. It was found that in a topologically closed system, such as the AJTJ, where the number of trapped fluxons is conserved and new fluxons can be created only in the form of fluxon-antifluxon pairs, the existence of a steady viscous flow of Josephson vortices only relies on the capability of the fluxons and antifluxons to be generated and to annihilate each other inside the junction. This also implies that flux-flow effects are not observable in circular AJTJs.Comment: 26 pages, 8 figure

    Field Cooled Annular Josephson Tunnel Junctions

    Full text link
    We investigate the physics of planar annular Josephson tunnel junctions quenched through their transition temperature in the presence of an external magnetic field. Experiments carried out with long Nb/Al-AlOx/Nb annular junctions showed that the magnetic flux trapped in the high-quality doubly-connected superconducting electrodes forming the junction generates a persistent current whose associated magnetic field affects the both the static and dynamics properties of the junctions. More specifically, the field trapped in the hole of one electrode combined with a d.c. bias current induces a viscous flow of dense trains of Josephson vortices which manifests itself through the sequential appearance of displaced linear slopes, Fiske step staircases and Eck steps in the junction's current-voltage characteristic. Furthermore, a field shift is observed in the first lobe of the magnetic diffraction pattern. The effects of the persistent current can be mitigated or even canceled by an external magnetic field perpendicular to the junction plane. The radial field associated with the persistent current can be accurately modeled with the classical phenomenological sine-Gordon model for extended one-dimensional Josephson junctions. Extensive numerical simulations were carried out to disclose the basic flux-flow mechanism responsible for the appearance of the magnetically induced steps and to elucidate the role of geometrical parameters. It was found that the imprint of the field cooling is enhanced in confocal annular junctions which are the natural generalization of the well studied circular annular junctions.Comment: 26 pages, 10 figures. Supercond. Sci. Technol (2020

    An Analytical Approach to Inhomogeneous Structure Formation

    Full text link
    We develop an analytical formalism that is suitable for studying inhomogeneous structure formation, by studying the joint statistics of dark matter halos forming at two points. Extending the Bond et al. (1991) derivation of the mass function of virialized halos, based on excursion sets, we derive an approximate analytical expression for the ``bivariate'' mass function of halos forming at two redshifts and separated by a fixed comoving Lagrangian distance. Our approach also leads to a self-consistent expression for the nonlinear biasing and correlation function of halos, generalizing a number of previous results including those by Kaiser (1984) and Mo & White (1996). We compare our approximate solutions to exact numerical results within the excursion-set framework and find them to be consistent to within 2% over a wide range of parameters. Our formalism can be used to study various feedback effects during galaxy formation analytically, as well as to simply construct observable quantities dependent on the spatial distribution of objects. A code that implements our method is publicly available at http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added, Figure 2 axis relabele

    Chemical composition of the stellar cluster Gaia1: No surprise behind Sirius

    Get PDF
    IndexaciĂłn: Web of Science; Scopus.We observed six He-clump stars of the intermediate-Age stellar cluster Gaia1 with the MIKE/Magellan spectrograph. A possible extra-galactic origin of this cluster, recently discovered thanks to the first data release of the ESA Gaia mission, has been suggested, based on its orbital parameters. Abundances for Fe, α, proton-And neutron-capture elements have been obtained. We find no evidence of intrinsic abundance spreads. The iron abundance is solar ([FeI/H] = + 0.00 ± 0.01; σ = 0.03 dex). All the other abundance ratios are generally solar-scaled, similar to the Galactic thin disk and open cluster stars of similar metallicity. The chemical composition of Gaia1 does not support an extra-galactic origin for this stellar cluster, which can be considered as a standard Galactic open cluster.https://www.aanda.org/articles/aa/abs/2017/07/aa31009-17/aa31009-17.htm

    The Local Galaxy Density and the Arm Class of Spiral Galaxies

    Full text link
    We have examined the effect of the environmental density on the arm classification of an extensive sample of spiral galaxies included in the Nearby Galaxy Catalog (Tully, 1988a). We have also explored the dependence of the arm class of a galaxy on other factors, such as its blue absolute magnitude and its disk-to-total mass ratio, inferred in the literature either from the gradient of a good galaxy rotation curve or from a photometric mass decomposition method. We have found that the arm class is strongly related to the absolute magnitude in the mid-type spirals (in the sense that grand design galaxies are, on average, more luminous than flocculent objects), whilst this relation is considerably weaker in the early and late types. In general the influence of the local density on the arm structure appears to be much weaker than that of the absolute magnitude. The local density acts essentially in strengthening the arm class--absolute magnitude relation for the mid types, whereas no environmental density effects are observed in the early and late types. Using the most recent estimates of the disk-to-total mass ratio, we do not confirm this ratio to be a significant factor which affects the arm class; nevertheless, owing to poor statistics and large uncertanties, the issue remains open. Neither a local density effect nor an unambiguous bar effect on the disk-to-total mass ratio is detectable; the latter finding may challenge some theoretical viewpoints on the formation of bar structures.Comment: 15 pages, Latex, SISSA 102/93/A openbib.sty and 4 POSTSCRIPT figures appende
    • 

    corecore