We have examined the effect of the environmental density on the arm
classification of an extensive sample of spiral galaxies included in the Nearby
Galaxy Catalog (Tully, 1988a). We have also explored the dependence of the arm
class of a galaxy on other factors, such as its blue absolute magnitude and its
disk-to-total mass ratio, inferred in the literature either from the gradient
of a good galaxy rotation curve or from a photometric mass decomposition
method. We have found that the arm class is strongly related to the absolute
magnitude in the mid-type spirals (in the sense that grand design galaxies are,
on average, more luminous than flocculent objects), whilst this relation is
considerably weaker in the early and late types. In general the influence of
the local density on the arm structure appears to be much weaker than that of
the absolute magnitude. The local density acts essentially in strengthening the
arm class--absolute magnitude relation for the mid types, whereas no
environmental density effects are observed in the early and late types. Using
the most recent estimates of the disk-to-total mass ratio, we do not confirm
this ratio to be a significant factor which affects the arm class;
nevertheless, owing to poor statistics and large uncertanties, the issue
remains open. Neither a local density effect nor an unambiguous bar effect on
the disk-to-total mass ratio is detectable; the latter finding may challenge
some theoretical viewpoints on the formation of bar structures.Comment: 15 pages, Latex, SISSA 102/93/A openbib.sty and 4 POSTSCRIPT figures
appende