We report theoretical and experimental work on the development of a Josephson
vortex qubit based on a confocal annular Josephson tunnel junction (CAJTJ). The
key ingredient of this geometrical configuration is a periodically variable
width that generates a spatial vortex potential with bistable states. This
intrinsic vortex potential can be tuned by an externally applied magnetic field
and tilted by a bias current. The two-state system is accurately modeled by a
one-dimensional sine-Gordon like equation by means of which one can numerically
calculate both the magnetic field needed to set the vortex in a given state as
well as the vortex depinning currents. Experimental data taken at 4.2K on
high-quality Nb/Al-AlOx/Nb CAJTJs with an individual trapped fluxon advocate
the presence of a robust and finely tunable double-well potential for which
reliable manipulation of the vortex state has been classically demonstrated.
The vortex is prepared in a given potential by means of an externally applied
magnetic field, while the state readout is accomplished by measuring the
vortex-depinning current in a small magnetic field. Our proof of principle
experiment convincingly demonstrates that the proposed vortex qubit based on
CAJTJs is robust and workable.Comment: 20 pages, 11 figure