269 research outputs found

    Thalamic neurons in silico

    Full text link
    In der vorliegenden Arbeit wurde „Computer Modeling“ benutzt, um den funktionalen Einfluss von Veränderungen in einem oder mehreren Ionenkanälen in thalamischen Inter- und Schaltneuronen zu untersuchen. Der Thalamus ist eine Hirnregion, die sowohl im Schlaf-Wach-Wechsel als auch in mehreren Neuropathien involviert ist. Die Neurone des Thalamus zeigen zwei unterschiedliche Feuermodi während der Wachheit und des Schlafens. Im Vergleich zum tonischen Feuerverhalten während der Wachheit, besitzen die Aktionspotenziale, die im „Burst“-Modus generiert werden eine höhere Frequenz und reiten auf einem sog. „low-threshold-spike“ (LTS). Dieser LTS wird durch den T-Strom mediiert und folgt einer durch den H-Strom getriebenen Depolarisation. Ob ein Neuron tonisches Feuern oder „Bursten“ zeigt, hängt von dessen Membranruhepotenzial ab, welches wiederum durch die Interaktion des H- und des TASK-Stroms stabilisiert wird

    Long-term management of multiple sclerosis patients treated with cladribine tablets beyond year 4

    Get PDF
    Introduction Oral cladribine is a highly effective pulsed selective immune reconstitution therapy licensed for relapsing multiple sclerosis (RMS) since 2017. A full treatment course comprises two treatment cycles given 1 year apart, followed by two treatment-free years. The management of cladribine-treated patients beyond year 4 needs to be addressed as patients have now passed the initial 4 years since European Medical Agency approval. Areas covered A panel of neurologists and a neuroradiologist experienced in MS treatment/monitoring evaluated clinical trial data and real-world evidence and proposed recommendations for the management of cladribine-treated patients beyond year 4. Expert opinion Continuous monitoring of disease activity during the treatment-free period is important. Subsequent management depends on the presence or absence of inflammatory disease activity, determined in the absence of consistent guidelines via practice-driven neurological decision criteria. Persisting or newly occurring inflammatory disease activity is an indication for further treatment, i.e. either re-initiation of cladribine or switching to another highly effective disease-modifying therapy. The decision to retreat or switch should be based on clinical and radiological evaluation considering disease course, treatment history, and safety aspects. In the absence of disease activity, either retreatment can be offered, or the treatment-free period can be extended under structured monitoring

    Cytotoxic CD8+ T cell-neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death

    Get PDF
    Cytotoxic CD8(+) T cells are considered important effector cells contributing to neuronal damage in inflammatory and degenerative CNS disorders. Using time-lapse video microscopy and two-photon imaging in combination with whole-cell patch-clamp recordings, we here show that major histocompatibility class I (MHC I)-restricted neuronal antigen presentation and T cell receptor specificity determine CD8(+) T-cell locomotion and neuronal damage in culture and hippocampal brain slices. Two separate functional consequences result from a direct cell-cell contact between antigen-presenting neurons and antigen-specific CD8(+) T cells. (1) An immediate impairment of electrical signaling in single neurons and neuronal networks occurs as a result of massive shunting of the membrane capacitance after insertion of channel-forming perforin (and probably activation of other transmembrane conductances), which is paralleled by an increase of intracellular Ca(2+) levels (within <10 min). (2) Antigen-dependent neuronal apoptosis may occur independently of perforin and members of the granzyme B cluster (within approximately 1 h), suggesting that extracellular effects can substitute for intracellular delivery of granzymes by perforin. Thus, electrical silencing is an immediate consequence of MHC I-restricted interaction of CD8(+) T cells with neurons. This mechanism is clearly perforin-dependent and precedes, but is not causally linked, to neuronal cell death

    Apoptosis and failure of checkpoint kinase 1 activation in human induced pluripotent stem cells under replication stress

    Get PDF
    Background: Human induced pluripotent stem (hiPS) cells have the ability to undergo self-renewal and differentiation similarly to human embryonic stem (hES) cells. We have recently shown that hES cells under replication stress fail to activate checkpoint kinase 1 (CHK1). They instead commit to apoptosis, which appears to be a primary defense mechanism against genomic instability. It is not known whether the failure of CHK1 activation and activation of apoptosis under replication stress is solely a feature of hES cells, or if it is a feature that can be extended to hiPS cells. Methods: Here we generated integration-free hiPS cell lines by mRNA transfection, and characterised the cell lines. To investigate the mechanism of S phase checkpoint activation, we have induced replication stress by adding excess thymidine to the cell culture medium, and performed DNA content analysis, apoptosis assays and immunoblottings. Results: We are showing that hiPS cells similarly to hES cells, fail to activate CHK1 when exposed to DNA replication inhibitors and commit to apoptosis instead. Our findings also suggest the Ataxia Telangiectasia Mutated pathway might be responding to DNA replication stress, resulting in apoptosis. Conclusion: Together, these data suggest that the apoptotic response was properly restored during reprogramming with mRNA, and that apoptosis is an important mechanism shared by hiPS and hES cells to maintain their genomic integrity when a replication stress occurs

    Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration

    Get PDF
    Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy

    Pseudocholinesterase as a biomarker for untreated Wilson's disease

    Get PDF
    The aim of this study was to demonstrate that pseudocholinesterase (CHE) serum level is a useful diagnostic biomarker for untreated Wilson's disease (WD). Between 2013 and 2019, about 75 patients were referred to the outpatient department of the University of Düsseldorf with suspected Wilson's disease. In 31 patients with suspected Wilson's disease (WD-SUS-group), WD was excluded by means of investigations other than analysis of blood and urine. A total of 27 parameters of blood and urine in these 31 patients were compared to those of 20 de novo patients with manifest WD (WD-DEF-group), which parameter showed the highest significance level of difference between the WD-DEF-group and the WD-SUS-group. Thereafter, receiver operating characteristics (ROC-curves) were analyzed to evaluate which parameter showed the largest area under the curve (AUC) to detect WD. Finally, a logistic regression analysis was performed to analyze which combination of parameters allowed the best classification of the 51 patients either into the WD-DEF-group or into the WD-SUS-group. CHE showed the highest significance level for a difference between the WD-DEF- and WD-SUS-group, had the highest AUC, and, in combination with ceruloplasmin, allowed 100% correct classification. Without CHE, no other combination of parameters reached this level of correct classification. After the initiation of treatment, which regularly results in an improvement in CHE, the high diagnostic accuracy of this biomarker was lost. Cholinesterase turns out to be an excellent biomarker for differentiation between untreated de novo patients with manifest WD and heterozygotic gene carriers

    Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation

    Get PDF
    We conducted a genome-wide association study (GWAS) on multiple sclerosis (MS) susceptibility in German cohorts with 4888 cases and 10,395 controls. In addition to associations within the major histocompatibility complex (MHC) region, 15 non-MHC loci reached genome-wide significance. Four of these loci are novel MS susceptibility loci. They map to the genes L3MBTL3, MAZ, ERG, and SHMT1. The lead variant at SHMT1 was replicated in an independent Sardinian cohort. Products of the genes L3MBTL3, MAZ, and ERG play important roles in immune cell regulation. SHMT1 encodes a serine hydroxymethyltransferase catalyzing the transfer of a carbon unit to the folate cycle. This reaction is required for regulation of methylation homeostasis, which is important for establishment and maintenance of epigenetic signatures. Our GWAS approach in a defined population with limited genetic substructure detected associations not found in larger, more heterogeneous cohorts, thus providing new clues regarding MS pathogenesis

    Significantly lower antigenicity of incobotulinumtoxin than abo- or onabotulinumtoxin

    Get PDF
    BACKGROUND: For many indications, BoNT/A is repetitively injected with the risk of developing neutralizing antibodies (NABs). Therefore, it is important to analyze whether there is a difference in antigenicity between the different licensed BoNT/A preparations. METHODS: In this cross-sectional study, the prevalence of NABs was tested by means of the sensitive mouse hemidiaphragm assay (MHDA) in 645 patients. Patients were split into those having exclusively been treated with the complex protein-free incoBoNT/A preparation (CF-MON group) and those having started BoNT/A therapy with a complex protein-containing BoNT/A preparation (CC-I group). This CC-I group was split into those patients who remained either on abo- or onaBoNT/A (CC-MON group) and those who had been treated with at least two BoNT/A preparations (CC-SWI group). To balance treatment duration, only CC-MON patients who did not start their BoNT/A therapy more than 10 years before recruitment (CC-MON-10 group) were further analyzed. The log-rank test was used to compare the prevalence of NABs in the CF-MON and CC-MON-10 group. RESULTS: In the CF-MON subgroup, no patient developed NABs. In the CC-I group, 84 patients were NAB-positive. NABs were found in 33.3% of those who switched preparations (CC-SWI) and in 5.9% of the CC-MON-10 group. Kaplan-Meier curves for remaining NAB-negative under continuous BoNT/A therapy were significantly different (p < 0.035) between the CF-MON and CC-MON-10 group. CONCLUSION: Frequent injections of a complex protein-containing BoNT/A preparation are associated with significantly higher risks of developing NABs than injections with the same frequency using the complex protein-free incoBoNT/A preparation
    • …
    corecore