24 research outputs found

    Magnetic and thermodynamic properties of Sr_{2}LaFe_{3}O_{9}

    Full text link
    Using a Dirac-Heisenberg Hamiltonian with biquadratic exchange interactions, we study the effect of iron disproportionation on the magnetic ordering, and describe the first-order magnetic transition occurring in the perovskite Sr_{2}LaFe_{3}O_{9}. Upon fitting the experimental data, we give an estimate of the exchange integrals for the antiferromagntic and ferromagnetic interactions, in agreement with previous works on kindered compounds. Spin-wave theory yields a magnon spectrum with a gapless antiferromagnetic mode together with two gapped ferromagnetic ones.Comment: 8 pages of RevTex, 5 figures (available upon request), submitted to J. Mag. Mag. Ma

    Investigation of thermal and magnetic properties of defects in a spin-gap compound NaV2O5

    Full text link
    The specific heat, magnetic susceptibility and ESR signals of a Na-deficient vanadate Na_xV_2O_5 (x=1.00 - 0.90) were studied in the temperature range 0.07 - 10 K, well below the transition point to a spin-gap state. The contribution of defects provided by sodium vacancies to the specific heat was observed. It has a low temperature part which does not tend to zero till at least 0.3 K and a high temperature power-like tail appears above 2 K. Such dependence may correspond to the existence of local modes and correlations between defects in V-O layers. The magnetic measurements and ESR data reveal S=1/2 degrees of freedom for the defects, with their effective number increasing in temperature and under magnetic field. The latter results in the nonsaturating magnetization at low temperature. No long-range magnetic ordering in the system of defects was found. A model for the defects based on electron jumps near vacancies is proposed to explain the observed effects. The concept of a frustrated two-dimensional correlated magnet induced by the defects is considered to be responsible for the absence of magnetic ordering.Comment: 6 pages, 8 figure

    Neutron scattering study of the field-induced soliton lattice in CuGeO3_3

    Full text link
    CuGeO3_3 undergoes a transition from a spin-Peierls phase to an incommensurate phase at a critical field of Hc12.5H_c\approx 12.5 T. In the high-field phase a lattice of solitons forms, with both structural and magnetic components, and these have been studied using neutron scattering techniques. Our results provide direct evidence for a long-ranged magnetic soliton structure which has both staggered and uniform magnetizations, and with amplitudes that are broadly in accord with theoretical estimates. The magnetic soliton width, Γ\Gamma, and the field dependence of the incommensurability, δksp\delta k_{sp}, are found to agree well with theoretical predictions.Comment: 5 pages, 3 figure

    DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models

    Get PDF
    Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere via numerical integration of the Navier-Stokes equations. These systems have existed in one form or another for over half of a century, with the earliest discretizations having now evolved into a complex ecosystem of algorithms and computational strategies. In essence, no two dynamical cores are alike, and their individual successes suggest that no perfect model exists. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 non-hydrostatic dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school. This review includes a choice of model grid, variable placement, vertical coordinate, prognostic equations, temporal discretization, and the diffusion, stabilization, filters, and fixers employed by each syste

    Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    Get PDF
    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes

    European-wide simulations of croplands using an improved terrestrial biosphere model: 2. Interannual yields and anomalous CO 2 fluxes in 2003

    Get PDF
    International audienceAiming at producing improved estimates of carbon source/sink spatial and interannual patterns across Europe (35% croplands), this work uses the ORCHIDEE-STICS terrestrial biosphere model including a more realistic representation of croplands, described in part 1 (Smith et al., 2010). Crop yield is derived from annual Net Primary Productivity and compared with wheat and grain maize harvest data for five European countries. Over a 34 year period, the best correlation coefficient obtained between observed and simulated yield time series is for irrigated maize in Italy (R = 0.73). In the data as well as in the model, 1976 and 2003 appear as climate anomalies causing a approximate to 40% yield drop in the most affected regions. Simulated interannual yield anomalies and the spatial pattern of the yield drop in 2003 are found to be more realistic than the results from ORCHIDEE with no representation of croplands. The simulated 2003 anomalous carbon source from European ecosystems to the atmosphere due to the 2003 summer heat wave is in good agreement with atmospheric inversions (0.20GtC, from May to October). The anomaly is twice too large in the ORCHIDEE alone simulation, owing to the unrealistically high exposure of herbaceous plants to the extreme summer conditions. The mechanisms linking abnormally high summer temperatures, the crop productivity drop, and significant carbon source from European ecosystems in 2003 are discussed. Overall, this study highlights the importance of accounting for the specific phenologies of crops sown both in winter and in spring and for irrigation applied to summer crops in regional/global models of the terrestrial carbon cycle
    corecore