5,714 research outputs found

    Study of the electron trigger efficiency of the CMS Experiment using test beam data

    Get PDF
    A study of the electron identification and selection efficiency of the L1 Trigger algorithm has been performed using the combined ECAL/HCAL test beam data. A detailed discussion of the electron isolation and its impact on the selection efficiency is presented. The L1 electron algorithm is studied for different beam energies and the results indicate that efficiencies of 98% or more can be achieved for electrons with energies between 15 and 100 GeV. The fraction of charged hadrons with energies from 3 up to 100 GeV rejected by the L1 electron trigger algorithm is estimated to be larger than 93%.Comment: 22 pages, 14 figure

    Detection of SARS-CoV-2 on hospital surfaces

    Get PDF
    The COVID-19 pandemic, affecting 213 countries, with more than 10 million cases and over 500,000 deaths is still causing serious health, social and economic emergency worldwide. Italian Northern regions are among the most badly affected areas. Surfaces represent matrices to which particular attention should be paid for prevention and control of SARS-CoV-2 transmission. A few studies have highlighted virus presence on surfaces. We report the evidence of its presence on hospital surfaces, in a single room hosting a patient whose nose-pharyngeal swab resulted positive for SARS-CoV-2 RNA at the admission. The surfaces sampling was carried out using pre-wetted swabs followed by extraction and amplification of viral RNA by reverse Real-Time Polymerase Chain Reaction (rRT-PCR). A total of 4/15 (26.66%) surfaces were positive for SARS-CoV-2 RNA: the right bed rail, the call button, the bed trapeze bar, the stethoscope; moreover, the patient’s inner surgical mask was positive, showing the emission of the virus from the patient. This study is a further confirmation that the surfaces represent a potential vehicle of transmission. This supports the need for strict adherence to hand and environmental hygiene. (www.actabiomedica.it)

    Using XDAQ in Application Scenarios of the CMS Experiment

    Full text link
    XDAQ is a generic data acquisition software environment that emerged from a rich set of of use-cases encountered in the CMS experiment. They cover not the deployment for multiple sub-detectors and the operation of different processing and networking equipment as well as a distributed collaboration of users with different needs. The use of the software in various application scenarios demonstrated the viability of the approach. We discuss two applications, the tracker local DAQ system for front-end commissioning and the muon chamber validation system. The description is completed by a brief overview of XDAQ.Comment: Conference CHEP 2003 (Computing in High Energy and Nuclear Physics, La Jolla, CA

    The CMS Event Builder

    Full text link
    The data acquisition system of the CMS experiment at the Large Hadron Collider will employ an event builder which will combine data from about 500 data sources into full events at an aggregate throughput of 100 GByte/s. Several architectures and switch technologies have been evaluated for the DAQ Technical Design Report by measurements with test benches and by simulation. This paper describes studies of an EVB test-bench based on 64 PCs acting as data sources and data consumers and employing both Gigabit Ethernet and Myrinet technologies as the interconnect. In the case of Ethernet, protocols based on Layer-2 frames and on TCP/IP are evaluated. Results from ongoing studies, including measurements on throughput and scaling are presented. The architecture of the baseline CMS event builder will be outlined. The event builder is organised into two stages with intelligent buffers in between. The first stage contains 64 switches performing a first level of data concentration by building super-fragments from fragments of 8 data sources. The second stage combines the 64 super-fragments into full events. This architecture allows installation of the second stage of the event builder in steps, with the overall throughput scaling linearly with the number of switches in the second stage. Possible implementations of the components of the event builder are discussed and the expected performance of the full event builder is outlined.Comment: Conference CHEP0

    Commissioning of the CMS High Level Trigger

    Get PDF
    The CMS experiment will collect data from the proton-proton collisions delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to 14 TeV. The CMS trigger system is designed to cope with unprecedented luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger architecture only employs two trigger levels. The Level-1 trigger is implemented using custom electronics, while the High Level Trigger (HLT) is based on software algorithms running on a large cluster of commercial processors, the Event Filter Farm. We present the major functionalities of the CMS High Level Trigger system as of the starting of LHC beams operations in September 2008. The validation of the HLT system in the online environment with Monte Carlo simulated data and its commissioning during cosmic rays data taking campaigns are discussed in detail. We conclude with the description of the HLT operations with the first circulating LHC beams before the incident occurred the 19th September 2008

    Surfactant protein D modulates HIV infection of both T-cells and dendritic cells

    Get PDF
    Surfactant Protein D (SP-D) is an oligomerized C-type lectin molecule with immunomodulatory properties and involvement in lung surfactant homeostasis in the respiratory tract. SP-D binds to the enveloped viruses, influenza A virus and respiratory syncytial virus and inhibits their replication in vitro and in vivo. SP-D has been shown to bind to HIV via the HIV envelope protein gp120 and inhibit infectivity in vitro. Here we show that SP-D binds to different strains of HIV (BaL and IIIB) and the binding occurs at both pH 7.4 and 5.0 resembling physiological relevant pH values found in the body and the female urogenital tract, respectively. The binding of SP-D to HIV particles and gp120 was inhibited by the presence of several hexoses with mannose found to be the strongest inhibitor. Competition studies showed that soluble CD4 and CVN did not interfere with the interaction between SP-D and gp120. However, soluble recombinant DC-SIGN was shown to inhibit the binding between SP-D and gp120. SP-D agglutinated HIV and gp120 in a calcium dependent manner. SP-D inhibited the infectivity of HIV strains at both pH values of 7.4 and 5.0 in a concentration dependent manner. The inhibition of the infectivity was abolished by the presence of mannose. SP-D enhanced the binding of HIV to immature monocyte derived dendritic cells (iMDDCs) and was also found to enhance HIV capture and transfer to the T-cell like line PM1. These results suggest that SP-D can bind to and inhibit direct infection of T-cells by HIV but also enhance the transfer of infectious HIV particles from DCs to T-cells in vivo

    Surfactant protein D inhibits HIV-1 infection of target cells via interference with gp120-CD4 interaction and modulates pro-inflammatory cytokine production

    Get PDF
    © 2014 Pandit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant Protein SP-D, a member of the collectin family, is a pattern recognition protein, secreted by mucosal epithelial cells and has an important role in innate immunity against various pathogens. In this study, we confirm that native human SP-D and a recombinant fragment of human SP-D (rhSP-D) bind to gp120 of HIV-1 and significantly inhibit viral replication in vitro in a calcium and dose-dependent manner. We show, for the first time, that SP-D and rhSP-D act as potent inhibitors of HIV-1 entry in to target cells and block the interaction between CD4 and gp120 in a dose-dependent manner. The rhSP-D-mediated inhibition of viral replication was examined using three clinical isolates of HIV-1 and three target cells: Jurkat T cells, U937 monocytic cells and PBMCs. HIV-1 induced cytokine storm in the three target cells was significantly suppressed by rhSP-D. Phosphorylation of key kinases p38, Erk1/2 and AKT, which contribute to HIV-1 induced immune activation, was significantly reduced in vitro in the presence of rhSP-D. Notably, anti-HIV-1 activity of rhSP-D was retained in the presence of biological fluids such as cervico-vaginal lavage and seminal plasma. Our study illustrates the multi-faceted role of human SPD against HIV-1 and potential of rhSP-D for immunotherapy to inhibit viral entry and immune activation in acute HIV infection. © 2014 Pandit et al.The work (Project no. 2011-16850) was supported by Medical Innovation Fund of Indian Council of Medical Research, New Delhi, India (www.icmr.nic.in/)

    Retrospective screening of solid organ donors in Italy, 2009, reveals unpredicted circulation of West Nile virus

    Get PDF
    Since the occurrence of West Nile virus (WNV) infection in humans in 2008 in Italy, concerns have been raised about the potential risks associated with solid organ transplantation (SOT). A nationwide retrospective survey showed that 1.2% of SOT donors in 2009 were WNV-seropositive and demonstrated that human WNV infection is distributed throughout several Italian regions. Transmission of WNV or other arboviruses through SOT is a possibility and risk assessment should be carried out before SOT to avoid infection through transplantatation
    • …
    corecore