16 research outputs found

    Building urban flood resilience with rainwater management

    Get PDF
    This is the final version.Urban stormwater is a significant hazard and a promising resource. Recent studies have highlighted that effective and smart rainwater management provides both flood and drought mitigation benefits through capturing extreme rainfall and contributing to water demands at the property scale [1], indicating opportunities to upscale benefits across urban areas. However, for stormwater management to reach this potential, planners must move away from ad-hoc and localised application towards integrated catchment-wide strategies, capable of delivering catchment-wide benefits. New planning methodologies are required to achieve this shift and key questions remain regarding how strategies could be applied to maximise flood resilience, supply augmentation and cost-effectiveness across urban scales. This study responds to these emerging challenges through assessing the potential benefits of catchment-scale rainwater management across the Pandon Dene surface water catchment in Newcastle-upon Tyne, NE England.Engineering and Physical Sciences Research Council (EPSRC

    A critical evaluation of the water supply and stormwater management performance of retrofittable domestic rainwater harvesting systems

    Get PDF
    Rainwater harvesting systems are often used as both an alternative water source and a stormwater management tool. Many studies have focused on the water-saving potential of these systems, but research into aspects that impact stormwater retention—such as demand patterns and climate change—is lacking. This paper investigates the short-term impact of demand on both water supply and stormwater management and examines future and potential performance over a longer time scale using climate change projections. To achieve this, data was collected from domestic rainwater harvesting systems in Broadhempston, UK, and used to create a yield-after-spillage model. The validation process showed that using constant demand as opposed to monitored data had little impact on accuracy. With regards to stormwater management, it was found that monitored households did not use all the non-potable available water, and that increasing their demand for this was the most effective way of increasing retention capacity based on the modelling study completed. Installing passive or active runoff control did not markedly improve performance. Passive systems reduced the outflow to greenfield runoff for the longest time, whereas active systems increased the outflow to a level substantially above roof runoff in the 30 largest events

    A laboratory study into a novel, retrofittable rainwater harvesting system

    Get PDF
    Aims: To establish the system characteristics of a novel rainwater harvesting system.Study Design: A laboratory test rig was used to assess the selected technology.Place and Duration of Study: University of Exeter, Centre for Water Systems between June 2014 and May 2015.Methodology: Previous research has identified that systems should have: 1) reduced capital costs, 2) reduced operational costs and 3) increased ease of retrofitting. To investigate the system’s ability to address these requirements, two full-scale laboratory test rigs have been used to assess flow and power consumption characteristics under a range of installation scenarios.Results: The system was identified to have a mean power consumption of 0.12kWh/m3 during a one hour pump test. Electrical costs were found to increase when the power consumption of the 11W control board was taken into account.Conclusion: Subject to reduction of the standby power consumption of the controller, the novel RWH system assessed in this study has potential to provide non-potable water supplies to households in the UK at a lower power consumption rate than existing water supply systems identified in the literature

    Engineering Comes Home: Co-designing nexus infrastructure from the bottom-up

    Get PDF
    The ‘nexus’ between water, food and energy systems is well established. It is conventionally analysed as a supply-side problem of infrastructure interdependencies, overlooking demand-side interactions and opportunities. The home is one of the most significant sites of nexus interactions and opportunities for redesigning technologies and infrastructure. New developments in ‘smart city’ technologies have the potential to support a bottom-up approach to designing and managing nexus infrastructure. The Engineering Comes Home was a research project that turned infrastructure design on its head. The objectives of the project were to: Demonstrate a new paradigm for engineering design starting from the viewpoint of the home, looking out towards systems of provision to meet household demands. Integrate thinking about water, energy, food, waste and data at the domestic scale to support userled innovation and co-design of technologies and infrastructure. Test new design methods that connect homes to communities, technologies and infrastructure, enhancing positive interactions between data, water, energy, food and waste systems. Develop a robust Lifecycle Assessment (LCA) Calculator tool to support environmental decisionmaking in co-design. Working with residents of the Meakin Estate in South London, the project followed a co-design method to identify requirements, analyse options and develop and test a detailed design for a preferred option. The outputs were: 1) Ethnographic study of how residents use water, energy and food resources in their homes and key opportunities for engineering design to improve wellbeing and reduce resource consumption. 2) Co-design of decentralised infrastructural systems in three workshops in 2016-2017. The first workshop identified key priorities for development from the community using a novel token-based system design method, to enable participants to build up alternative designs for local provision of water, energy, food and waste services. The second workshop provided participants with factsheets and photographs of the candidate technologies, which were then analysed using a LCA Calculator tool. 47 Rainwater harvesting was selected as the technology for further co-design in the third workshop, which focussed on scaling up a pilot installation. 3) Pilot-scale smart rainwater system was installed in partnership with the Over The Air Analytics (OTA). OTA’s system enables remote control of the rainwater storage tanks to optimise their performance as stormwater attenuation as well as non-potable water supply. 4) Lifecycle Assessment (LCA) Calculator to enable quick estimation of the impacts of new systems and technology to deliver water, energy and food, and manage waste at the household and neighbourhood scale. 5) Stakeholders, including utilities, design consultancies and community based organisations, were engaged in three workshops to inform the wider relevance and development of the co-design methods and tools. 6) Toolbox and method statements to standardise and disseminate the methods used in the project for wider application and development

    Co-producing research with academics and industry to create a more resilient UK water sector

    Get PDF
    This is the final version. Available on open access from UCL Press via the DOI in this recordSocietal, economic and environmental impact generated by academic research is a key focus of publicly funded research in the UK. Drawing on experiences from the Safe & SuRe project, a five-year research project that was co-produced with industry, this paper explores the challenges, learnings and benefits of co-producing research with academics and practitioners to create a more resilient UK water sector. Three aspects of the project are explored in detail: the use of a steering group, co-developing research intensively with a water company, and co-dissemination industry-facing events. Emerging themes include: (1) benefits of the industry steering group to develop working relationships and trust among the group; (2) increased dialogue and sharing of information between industry and academics going beyond the one-way communication more commonly reported by STEM academics; and (3) the value of co-disseminating research to maintain and engage new connections and spark new research questions.Engineering and Physical Sciences Research Council (EPSRC

    Financial feasibility of end-user designed rainwater harvesting and greywater reuse systems for high water use households

    Get PDF
    © 2017, The Author(s). Water availability pressures, competing end-uses and sewers at capacity are all drivers for change in urban water management. Rainwater harvesting (RWH) and greywater reuse (GWR) systems constitute alternatives to reduce drinking water usage and in the case of RWH, reduce roof runoff entering sewers. Despite the increasing popularity of installations in commercial buildings, RWH and GWR technologies at a household scale have proved less popular, across a range of global contexts. For systems designed from the top-down, this is often due to the lack of a favourable cost-benefit (where subsidies are unavailable), though few studies have focused on performing full capital and operational financial assessments, particularly in high water consumption households. Using a bottom-up design approach, based on a questionnaire survey with 35 households in a residential complex in Bucaramanga, Colombia, this article considers the initial financial feasibility of three RWH and GWR system configurations proposed for high water using households (equivalent to >203L per capita per day). A full capital and operational financial assessment was performed at a more detailed level for the most viable design using historic rainfall data. For the selected configuration (‘Alt 2’), the estimated potable water saving was 44% (equivalent to 131m3/year) with a rate of return on investment of 6.5% and an estimated payback period of 23years. As an initial end-user-driven design exercise, these results are promising and constitute a starting point for facilitating such approaches to urban water management at the household scale

    The influence of household rainwater harvesting system design on water supply and stormwater management efficiency

    Get PDF
    Rainwater harvesting is increasingly being recognised as a sustainable option for both urban water and stormwater management. This study explores the potential impact of household rainwater harvesting on water supply augmentation and stormwater management in a typical three-bedroom house in Newcastle-upon Tyne, NE England. The continuous simulation of historical rainfall events at 15-minutes resolution over a 30-year period (1984-2013) is carried out to evaluate the system’s water saving and stormwater control efficiencies. Current and future rainfall projections are also incorporated in the analysis. The British Code of practice (BS 8515) is adopted to design the rainwater harvesting system. Results indicate that a rainwater harvesting system which is primarily designed for water supply augmentation with the size of 2.4 m3 contributes 64% of non-potable water demand (toilet flushing) and an 86% reduction of stormwater runoff volume into the sewer system. A larger system (6.5 m3) which is sized for both water supply augmentation and flood management provides 70% non-potable water supply and 96% reduction of stormwater runoff volume, indicating that a system which is designed for water supply only may be sufficient to achieve dual benefits. The relationship between storage and system efficiencies are explored for commercially available tanks for historical and future rainfall events. The influence of storage volume on flood peak attenuation is also explored for the historical flood events

    Moving to a future of smart stormwater management: A review and framework for terminology, research, and future perspectives

    No full text
    This is the final version. Available on open access from Elsevier via the DOI in this recordStormwater hazards are a significant threat across the globe. These are continuing to increase in line with urbanisation and climate change, leading to a recognition that the historic paradigm of passive management using centralised infrastructure is insufficient to manage future hazards to our society, environment, and economy. The cross-sector Internet of Things revolution has inspired a new generation of smart stormwater management systems which offer an effective, cost beneficial and adaptive solution to enhance network capacities and reduce hazards. However, despite growing prominence within research, this technology remains under-utilised, in a large part due to fragmented and inconsistent alignment and terminology, obscuring the strategic co-ordination of research. We respond to this through systematically reviewing the terminology, practice and trajectory for smart stormwater management and developing a framework which can be applied to both coordinate and understand the existing research landscape, as well as identifying key research gaps for future development. We find that literature almost universally agrees that smart technology is, or will be, beneficial to stormwater management and that technology has reached partial maturity in terms of quantity management, although this has not yet transferred to water quality. However, research is dominated by proof-of-concept modelling studies, with limited practical application beyond real time control of large assets, individual pilot studies and monitoring. We recommend that future research explores and evidences the substantial benefits likely through expanding current implementation towards a coordinated, decentralised, and optimised catchment-scale approach.Engineering and Physical Sciences Research Council (EPSRC
    corecore