610 research outputs found

    Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages

    Get PDF
    Physical structures built by animals challenge our understanding of biological processes and inspire the development of smart materials and green architecture. It is thus indispensable to understand the drivers, constraints, and dynamics that lead to the emergence and modification of building behavior. Here, we demonstrate that spider web diversification repeatedly followed strikingly similar evolutionary trajectories, guided by physical constraints. We found that the evolution of suspended webs that intercept flying prey coincided with small changes in silk anchoring behavior with considerable effects on the robustness of web attachment. The use of nanofiber based capture threads (cribellate silk) conflicts with the behavioral enhancement of web attachment, and the repeated loss of this trait was frequently followed by physical improvements of web anchor structure. These findings suggest that the evolution of building behavior may be constrained by major physical traits limiting its role in rapid adaptation to a changing environment

    The Role of Human Papillomaviruses and Polyomaviruses in BRAF-Inhibitor Induced Cutaneous Squamous Cell Carcinoma and Benign Squamoproliferative Lesions

    Get PDF
    Background: Human papillomavirus (HPV) has long been proposed as a cofactor in the pathogenesis of cutaneous squamous cell carcinoma (cSCC). More recently, the striking clinico-pathological features of cSCCs that complicate treatment of metastatic melanoma with inhibitors targeting BRAF mutations (BRAFi) has prompted speculation concerning a pathogenic role for oncogenic viruses. Here, we investigate HPV and human polyomaviruses (HPyV) and correlate with clinical, histologic, and genetic features in BRAFi-associated cSCC. Materials and Methods: Patients receiving BRAFi treatment were recruited at Barts Health NHS Trust. HPV DNA was detected in microdissected frozen samples using reverse line probe technology and degenerate and nested PCR. HPV immunohistochemistry was performed in a subset of samples. Quantitative PCR was performed to determine the presence and viral load of HPyVs with affinity for the skin (HPyV6, HPyV7, HPyV9, MCPyV, and TSPyV). These data were correlated with previous genetic mutational analysis of H, K and NRAS, NOTCH1/2, TP53, CDKN2A, CARD11, CREBBP, TGFBR1/2. Chromosomal aberrations were profiled using single nucleotide polymorphism (SNP) arrays. Results: Forty-five skin lesions from seven patients treated with single agent vemurafenib in 2012–2013 were analyzed: 12 cSCC, 19 viral warts (VW), 2 actinic keratosis (AK), 5 verrucous keratosis/other squamoproliferative (VK/SP) lesions, one melanocytic lesion and 6 normal skin samples. Significant histologic features of viral infection were seen in 10/12 (83%) cSCC. HPV DNA was detected in 18/19 (95%) VW/SP, 9/12 (75%) cSCC, 4/5 (80%) SP, and 3/6 (50%) normal skin samples and in 1/12 cases assessed by immunohistochemistry. HPyV was co-detected in 22/30 (73%) of samples, usually at low viral load, with MCPyV and HPyV7 the most common. SNP arrays confirmed low levels of chromosomal abnormality and there was no significant correlation between HPV or HPyV detection and individual gene mutations or overall mutational burden. Conclusion: Despite supportive clinicopathologic evidence, the role for HPV and HPyV infection in the pathogenesis of BRAFi-induced squamoproliferative lesions remains uncertain. Synergistic oncogenic mechanisms are plausible although speculative. Nonetheless, with the prospect of a significant increase in the adjuvant use of these drugs, further research is justified and may provide insight into the pathogenesis of other BRAFi-associated malignancies

    Primary human osteoblasts in response to 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3and 24R,25-dihydroxyvitamin D3

    Get PDF
    The most biologically active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has well known direct effects on osteoblast growth and differentiation in vitro. The precursor 25-hydroxyvitamin D3 (25(OH)D3) can affect osteoblast function via conversion to 1,25(OH)2D3, however, it is largely unknown whether 25(OH)D3 can affect primary osteoblast function on its own. Furthermore, 25(OH)D3 is not only converted to 1,25(OH)2D3, but also to 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) which may have bioactivity as well. Therefore we used a primary human osteoblast model to examine whether 25(OH)D3 itself can affect osteoblast function using CYP27B1 silencing and to investigate whether 24R,25(OH)2D3 can affect osteoblast function. We showed that primary human osteoblasts responded to both 25(OH)D3 and 1,25(OH)2D3 by reducing their proliferation and enhancing their differentiation by the increase of alkaline phosphatase, osteocalcin and osteopontin expression. Osteoblasts expressed CYP27B1 and CYP24 and synthesized 1,25(OH)2D3 and 24R,25(OH)2D3 dose-dependently. Silencing of CYP27B1 resulted in a decline of 1,25(OH)2D3 synthesis, but we observed no significant differences in mRNA levels of differentiation markers in CYP27B1-silenced cells compared to control cells after treatment with 25(OH)D3. We demonstrated that 24R,25(OH)2D3 increased mRNA levels of alkaline phosphatase, osteocalcin and osteopontin. In addition, 24R,25(OH)2D3 strongly increased CYP24 mRNA. In conclusion, the vitamin D metabolites 25(OH)D3, 1,25(OH)2D3 and 24R,25(OH)2D3 can affect osteoblast differentiation directly or indirectly. We showed that primary human osteoblasts not only respond to 1,25(OH)2D3, but also to 24R,25(OH)2D3 by enhancing osteoblast differentiation. This suggests that 25(OH)D3 can affect osteoblast differentiation via conversion to the active metabolite 1,25(OH)2D3, but also via conversion to 24R,25(OH)2D3. Whether 25(OH)D3 has direct actions on osteoblast function needs further investigation

    Prevention of dementia using mobile phone applications (PRODEMOS): protocol for an international randomised controlled trial.

    Get PDF
    IntroductionProfiles of high risk for future dementia are well understood and are likely to concern mostly those in low-income and middle-income countries and people at greater disadvantage in high-income countries. Approximately 30%-40% of dementia cases have been estimated to be attributed to modifiable risk factors, including hypertension, smoking and sedentary lifestyle. Tailored interventions targeting these risk factors can potentially prevent or delay the onset of dementia. Mobile health (mHealth) improves accessibility of such prevention strategies in hard-to-reach populations while at the same time tailoring such approaches. In the current study, we will investigate the effectiveness and implementation of a coach-supported mHealth intervention, targeting dementia risk factors, to reduce dementia risk.Methods and analysisThe prevention of dementia using mobile phone applications (PRODEMOS) randomised controlled trial will follow an effectiveness-implementation hybrid design, taking place in the UK and China. People are eligible if they are 55-75 years old, of low socioeconomic status (UK) or from the general population (China); have ≄2 dementia risk factors; and own a smartphone. 2400 participants will be randomised to either a coach-supported, interactive mHealth platform, facilitating self-management of dementia risk factors, or a static control platform. The intervention and follow-up period will be 18 months. The primary effectiveness outcome is change in the previously validated Cardiovascular Risk Factors, Ageing and Incidence of Dementia dementia risk score. The main secondary outcomes include improvement of individual risk factors and cost-effectiveness. Implementation outcomes include acceptability, adoption, feasibility and sustainability of the intervention.Ethics and disseminationThe PRODEMOS trial is sponsored in the UK by the University of Cambridge and is granted ethical approval by the London-Brighton and Sussex Research Ethics Committee (reference: 20/LO/01440). In China, the trial is approved by the medical ethics committees of Capital Medical University, Beijing Tiantan Hospital, Beijing Geriatric Hospital, Chinese People's Liberation Army General Hospital, Taishan Medical University and Xuanwu Hospital. Results will be published in a peer-reviewed journal.Trial registration numberISRCTN15986016

    A Successful Approach to Kidney Transplantation in Patients With Enteric (Secondary) Hyperoxaluria

    Get PDF
    Background. Enteric hyperoxaluria due to malabsorption may cause chronic oxalate nephropathy and lead to end-stage renal disease. Kidney transplantation is challenging given the risk of recurrent calcium-oxalate deposition and nephrolithiasis. Methods. We established a protocol to reduce plasma oxalic acid levels peritransplantation based on reduced intake and increased removal of oxalate. The outcomes of 10 kidney transplantation patients using this protocol are reported. Results. Five patients received a living donor kidney and had immediate graft function. Five received a deceased donor kidney and had immediate (n = 1) or delayed graft function (n = 4). In patients with delayed graft function, the protocol was prolonged after transplantation. In 3 patients, our protocol was reinstituted because of late complications affecting graft function. One patient with high-output stoma and relatively low oxalate levels had lost her first kidney transplant because of recurrent oxalate depositions but now receives intravenous fluid at home on a routine basis 3 times per week to prevent dehydration. Patients are currently between 3 and 32 months after transplantation and all have a stable estimated glomerular filtration rate (mean, 51 +/- 21 mL/min per 1.73 m(2)). In 4 of 8 patients who underwent for cause biopsies after transplantation oxalate depositions were found. Conclusions. This is the first systematic description of kidney transplantation in a cohort of patients with enteric hyperoxaluria. Common complications after kidney transplantation impact long-term transplant function in these patients. With our protocol, kidney transplantation outcomes were favorable in this population with unfavorable transplantation prospects and even previous unsuccessful transplants

    Stable Coexistence of an Invasive Plant and Biocontrol Agent: A Parameterized Coupled Plant-Herbivore Model

    Get PDF
    1. Coupled plant-herbivore models, allowing feedback from plant to herbivore populations and vice versa, enable us to predict the impact of biocontrol agents on their target weed populations; however, they are rarely used in biocontrol studies. We describe the population biology of the invasive plant Echium plantagineum and the weevil Mogulones larvatus, a biocontrol agent, in Australia. In order to understand the dynamics of this plant-herbivore system, a series of coupled models of increasing complexity was developed. 2. A simple model was extended to include a seed bank, density-dependent plant fecundity, competition between weevil larvae and plant tolerance of herbivory, where below a threshold plants could compensate for larval feeding. Parameters and functional forms were estimated from experimental and field data. 3. The plant model, in the absence of the weevil, exhibited stable dynamics and provided a good quantitative description of field densities before the weevil was introduced. 4. In the coupled plant-herbivore model, density dependence in both plant fecundity and weevil larval competition stabilized the dynamics. Without larval competition the model was unstable, and plant tolerance of herbivory exacerbated this instability. This was a result of a time delay in plant response to herbivore densities. 5. Synthesis and applications. The coupled plant-herbivore model allowed us to predict whether stable coexistence of target plant and biocontrol agents was achievable at an acceptable level. We found this to be the case for the Echium-Mogulones system and believe that similar models would be of use when assessing new agents in this and other invasive plant biocontrol systems. Density dependence in new biocontrol agents should be assessed in order to determine whether it is likely to result in the aims of classical biocontrol: low, stable and sustainable populations of plant and herbivore. Further work should be done to characterize the strength of density dependence according to the niche occupied by the biocontrol agent, for example the strength and functional form of density dependence in stem borers may be quite different to that of defoliators

    Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing

    Get PDF
    Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform
    • 

    corecore