3,567 research outputs found
FORC Analysis of homogeneous nucleation in the two-dimensional kinetic Ising model
The first-order reversal curve (FORC) method is applied to the
two-dimensional kinetic Ising model. For the system size and magnetic field
chosen, the system reverses by the homogeneous nucleation and growth of many
droplets. This makes the dynamics of reversal nearly deterministic, in contrast
to the strongly disordered systems previously studied by the FORC method.
Consequently, the FORC diagrams appear different from those obtained in
previous studies. The Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory of phase
transformation by nucleation and growth is applied to the system. Reasonable
agreement with the Monte Carlo simulations is found, and the FORC method
suggests how the KJMA theory could be extended.Comment: 3 pages, 2 figures, presented at 2004 MMM meeting, to appear in
conference proceedings in J. Appl. Phys. (May 2005); rephrased several
section
Financial services used by small businesses: evidence from the 1998 survey of small business finances
Using newly available data from the 1998 Survey of Small Business Finances, this article offers preliminary findings regarding the characteristics of small businesses in the United States and their use of credit and other financial services. The main goals of the survey are to provide information on credit accessibility for small businesses, their use of financial services, and the sources of those services. The survey also provides a general-purpose database that can be used to study small business financing. Preliminary findings suggest that although the financial landscape has changed markedly since the previous survey in 1993, financing patterns and the use of particular suppliers have not.Small business ; Financial services industry
The role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity
We analyze a detailed model of a Bose-Einstein condensate trapped in a ring
optical resonator and contrast its classical and quantum properties to those of
a Fabry-P{\'e}rot geometry. The inclusion of two counter-propagating light
fields and three matter field modes leads to important differences between the
two situations. Specifically, we identify an experimentally realizable region
where the system's behavior differs strongly from that of a BEC in a
Fabry-P\'{e}rot cavity, and also where quantum corrections become significant.
The classical dynamics are rich, and near bifurcation points in the mean-field
classical system, the quantum fluctuations have a major impact on the system's
dynamics.Comment: 11 pages, 11 figures, submitted to PR
Inferring Species Trees Directly from Biallelic Genetic Markers: Bypassing Gene Trees in a Full Coalescent Analysis
The multi-species coalescent provides an elegant theoretical framework for
estimating species trees and species demographics from genetic markers.
Practical applications of the multi-species coalescent model are, however,
limited by the need to integrate or sample over all gene trees possible for
each genetic marker. Here we describe a polynomial-time algorithm that computes
the likelihood of a species tree directly from the markers under a finite-sites
model of mutation, effectively integrating over all possible gene trees. The
method applies to independent (unlinked) biallelic markers such as well-spaced
single nucleotide polymorphisms (SNPs), and we have implemented it in SNAPP, a
Markov chain Monte-Carlo sampler for inferring species trees, divergence dates,
and population sizes. We report results from simulation experiments and from an
analysis of 1997 amplified fragment length polymorphism (AFLP) loci in 69
individuals sampled from six species of {\em Ourisia} (New Zealand native
foxglove)
Conjugate field and fluctuation-dissipation relation for the dynamic phase transition in the two-dimensional kinetic Ising model
The two-dimensional kinetic Ising model, when exposed to an oscillating
applied magnetic field, has been shown to exhibit a nonequilibrium,
second-order dynamic phase transition (DPT), whose order parameter Q is the
period-averaged magnetization. It has been established that this DPT falls in
the same universality class as the equilibrium phase transition in the
two-dimensional Ising model in zero applied field. Here we study for the first
time the scaling of the dynamic order parameter with respect to a nonzero,
period-averaged, magnetic `bias' field, H_b, for a DPT produced by a
square-wave applied field. We find evidence that the scaling exponent,
\delta_d, of H_b at the critical period of the DPT is equal to the exponent for
the critical isotherm, \delta_e, in the equilibrium Ising model. This implies
that H_b is a significant component of the field conjugate to Q. A finite-size
scaling analysis of the dynamic order parameter above the critical period
provides further support for this result. We also demonstrate numerically that,
for a range of periods and values of H_b in the critical region, a
fluctuation-dissipation relation (FDR), with an effective temperature
T_{eff}(T, P, H_0) depending on the period, and possibly the temperature and
field amplitude, holds for the variables Q and H_b. This FDR justifies the use
of the scaled variance of Q as a proxy for the nonequilibrium susceptibility,
\partial / \partial H_b, in the critical region.Comment: revised version; 31 pages, 12 figures; accepted by Phys. Rev.
Applications of Computer Simulations and Statistical Mechanics in Surface Electrochemistry
We present a brief survey of methods that utilize computer simulations and
quantum and statistical mechanics in the analysis of electrochemical systems.
The methods, Molecular Dynamics and Monte Carlo simulations and
quantum-mechanical density-functional theory, are illustrated with examples
from simulations of lithium-battery charging and electrochemical adsorption of
bromine on single-crystal silver electrodes.Comment: 12 pages, 5 figures, Invited Book Chapte
Evidence for a dynamic phase transition in [Co/Pt]_3 magnetic multilayers
A dynamic phase transition (DPT) with respect to the period P of an applied
alternating magnetic field has been observed previously in numerical
simulations of magnetic systems. However, experimental evidence for this DPT
has thus far been limited to qualitative observations of hysteresis loop
collapse in studies of hysteresis loop area scaling. Here, we present
significantly stronger evidence for the experimental observation of this DPT,
in a [Co(4 A)/Pt(7 A)]_3-multilayer system with strong perpendicular
anisotropy. We applied an out-of-plane, time-varying (sawtooth) field to the
[Co/Pt]_3 multilayer, in the presence of a small additional constant field,
H_b. We then measured the resulting out-of-plane magnetization time series to
produce nonequilibrium phase diagrams (NEPDs) of the cycle-averaged
magnetization, Q, and its variance, Var(Q), as functions of P and H_b. The
experimental NEPDs are found to strongly resemble those calculated from
simulations of a kinetic Ising model under analagous conditions. The similarity
of the experimental and simulated NEPDs, in particular the presence of a
localized peak in the variance Var(Q) in the experimental results, constitutes
strong evidence for the presence of this DPT in our magnetic multilayer
samples. Technical challenges related to the hysteretic nature and response
time of the electromagnet used to generate the time-varying applied field
precluded us from extracting meaningful critical scaling exponents from the
current data. However, based on our results, we propose refinements to the
experimental procedure which could potentially enable the determination of
critical exponents in the future.Comment: substantial revision; 26 pages, 9 figures; to appear in Phys. Rev.
Investigating magnetic activity in very stable stellar magnetic fields: long-term photometric and spectroscopic study of the fully convective M4 dwarf V374 Peg
The ultrafast-rotating () fully convective
single M4 dwarf V374 Peg is a well-known laboratory for studying intense
stellar activity in a stable magnetic topology. As an observable proxy for the
stellar magnetic field, we study the stability of the light curve, and thus the
spot configuration. We also measure the occurrence rate of flares and coronal
mass ejections (CMEs). We analyse spectroscopic observations,
photometry covering 5 years, and additional photometry that expands the
temporal base over 16 years. The light curve suggests an almost rigid-body
rotation, and a spot configuration that is stable over about 16 years,
confirming the previous indications of a very stable magnetic field. We
observed small changes on a nightly timescale, and frequent flaring, including
a possible sympathetic flare. The strongest flares seem to be more concentrated
around the phase where the light curve indicates a smaller active region.
Spectral data suggest a complex CME with falling-back and re-ejected material,
with a maximal projected velocity of 675km/s. We observed a CME rate
much lower than expected from extrapolations of the solar flare-CME relation to
active stars.Comment: 15 figures, 4 tables, accepted for publication in A&
Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750)
The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium’s spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic. © 2019 National Academy of Sciences. All rights reserved
DE Canum Venaticorum : a bright, eclipsing red dwarf–white dwarf binary
Context. Close white dwarf–red dwarf binaries must have gone through a common-envelope phase during their evolution. DE CVn is a detached white dwarf–red dwarf binary with a relatively short (∼8.7 h) orbital period. Its brightness and the presence of eclipses makes this system ideal for a more detailed study.
Aims. From a study of photometric and spectroscopic observations of DE CVn we derive the system parameters that we discuss in the framework of common-envelope evolution.
Methods. Photometric observations of the eclipses are used to determine an accurate ephemeris. From a model fit to an average lowresolution spectrum of DE CVn, we constrain the temperature of the white dwarf and the spectral type of the red dwarf. The eclipse light curve is analysed and combined with the radial velocity curve of the red dwarf determined from time-resolved spectroscopy to derive constraints on the inclination and the masses of the components in the system.
Results. The derived ephemeris is HJDmin = 2 452 784.5533(1) + 0.3641394(2) × E. The red dwarf in DE CVn has a spectral type of M3V and the white dwarf has an effective temperature of 8 000 K. The inclination of the system is 86+3◦ −2 and the mass and radius of the red dwarf are 0.41 ± 0.06 M and 0.37+0.06 −0.007 R, respectively, and the mass and radius of the white dwarf are 0.51+0.06
−0.02 M and 0.0136+0.0008 −0.0002 R, respectively.
Conclusions. We found that the white dwarf has a hydrogen-rich atmosphere (DA-type). Given that DE CVn has experienced a common-envelope phase, we can reconstruct its evolution and we find that the progenitor of the white dwarf was a relatively lowmass star (M ≤ 1.6 M). The current age of this system is 3.3−7.3 × 109 years, while it will take longer than the Hubble time for DE CVn to evolve into a semi-detached system
- …
