369 research outputs found
Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals
We demonstrate that it is possible to distinguish with a complete certainty
between healthy subjects and patients with various dysfunctions of the cardiac
nervous system by way of multiresolutional wavelet transform of RR intervals.
We repeated the study of Thurner et al on different ensemble of subjects. We
show that reconstructed series using a filter which discards wavelet
coefficients related with higher scales enables one to classify individuals for
which the method otherwise is inconclusive. We suggest a delimiting diagnostic
value of the standard deviation of the filtered, reconstructed RR interval time
series in the range of (for the above mentioned filter), below
which individuals are at risk.Comment: 5 latex pages (including 6 figures). Accepted in Fractal
Impacts of mean annual air temperature change on a regional permafrost probability model for the southern Yukon and northern British Columbia, Canada
Abstract. Air temperature changes were applied to a regional model of permafrost probability under equilibrium conditions for an area of nearly 0.5 × 106 km2 in the southern Yukon and northwestern British Columbia, Canada. Associated environmental changes, including snow cover and vegetation, were not considered in the modelling. Permafrost extent increases from 58% of the area (present day: 1971–2000) to 76% under a −1 K cooling scenario, whereas warming scenarios decrease the percentage of permafrost area exponentially to 38% (+ 1 K), 24% (+ 2 K), 17% (+ 3 K), 12% (+ 4 K) and 9% (+ 5 K) of the area. The morphology of permafrost gain/loss under these scenarios is controlled by the surface lapse rate (SLR, i.e. air temperature elevation gradient), which varies across the region below treeline. Areas that are maritime exhibit SLRs characteristically similar above and below treeline resulting in low probabilities of permafrost in valley bottoms. When warming scenarios are applied, a loss front moves to upper elevations (simple unidirectional spatial loss). Areas where SLRs are gently negative below treeline and normal above treeline exhibit a loss front moving up-mountain at different rates according to two separate SLRs (complex unidirectional spatial loss). Areas that display high continentally exhibit bidirectional spatial loss in which the loss front moves up-mountain above treeline and down-mountain below treeline. The parts of the region most affected by changes in MAAT (mean annual air temperature) have SLRs close to 0 K km−1 and extensive discontinuous permafrost, whereas the least sensitive in terms of areal loss are sites above the treeline where permafrost presence is strongly elevation dependent.
</jats:p
Measurement of turbulence in the liverpool university turbomachinery wind tunnels and compressor
Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands
Permafrost stores globally significant amounts of carbon (C) which may start to decompose and be released to the atmosphere in form of carbon dioxide (CO 2 ) and methane (CH 4 ) as global warming promotes extensive thaw. This permafrost carbon feedback to climate is currently considered to be the most important carbon-cycle feedback missing from climate models. Predicting the magnitude of the feedback requires a better understanding of how differences in environmental conditions post-thaw, particularly hydrological conditions, control the rate at which C is released to the atmosphere. In the sporadic and discontinuous permafrost regions of north-west Canada, we measured the rates and sources of C released from relatively undisturbed ecosystems, and compared these with forests experiencing thaw following wildfire (well-drained, oxic conditions) and collapsing peat plateau sites (water-logged, anoxic conditions). Using radiocarbon analyses, we detected substantial contributions of deep soil layers and/or previously-frozen sources in our well-drained sites. In contrast, no loss of previously-frozen C as CO 2 was detected on average from collapsed peat plateaus regardless of time since thaw and despite the much larger stores of available C that were exposed. Furthermore, greater rates of new peat formation resulted in these soils becoming stronger C sinks and this greater rate of uptake appeared to compensate for a large proportion of the increase in CH 4 emissions from the collapse wetlands. We conclude that in the ecosystems we studied, changes in soil moisture and oxygen availability may be even more important than previously predicted in determining the effect of permafrost thaw on ecosystem C balance and, thus, it is essential to monitor, and simulate accurately, regional changes in surface wetness
Limited contribution of permafrost carbon to methane release from thawing peatlands
Models predict that thaw of permafrost soils at northern high-latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 21001-3. The effect on the Earth's climate depends strongly on the proportion of this C which is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2)1,4; even if CH4 emissions represent just 2% of the C release, they would contribute approximately one quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (10s of kg C m-2, ref. 7) of previously-frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m 2 yr-1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously-frozen C (<2 g CH4 m-2 yr-1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously-frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands
- …
