4,645 research outputs found

    Gaussian-Charge Polarizable Interaction Potential for Carbon Dioxide

    Full text link
    A number of simple pair interaction potentials of the carbon dioxide molecule are investigated and found to underestimate the magnitude of the second virial coefficient in the temperature interval 220 K to 448 K by up to 20%. Also the third virial coefficient is underestimated by these models. A rigid, polarizable, three-site interaction potential reproduces the experimental second and third virial coefficients to within a few percent. It is based on the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller correction and Gaussian charge densities on the atomic sites with an inducible dipole at the center of mass. The electric quadrupole moment, polarizability and bond distances are set to equal experiment. Density of the fluid at 200 and 800 bars pressure is reproduced to within some percent of observation over the temperature range 250 K to 310 K. The dimer structure is in passable agreement with electronically resolved quantum-mechanical calculations in the literature, as are those of the monohydrated monomer and dimer complexes using the polarizable GCPM water potential. Qualitative agreement with experiment is also obtained, when quantum corrections are included, for the relative stability of the trimer conformations, which is not the case for the pair potentials.Comment: Error in the long-range correction fixed and three-body dispersion introduced. 32 pages (incl. title page), 7 figures, 9 tables, double-space

    Flow probe of symmetry energy in relativistic heavy-ion reactions

    Get PDF
    Flow observables in heavy-ion reactions at incident energies up to about 1 GeV per nucleon have been shown to be very useful for investigating the reaction dynamics and for determining the parameters of reaction models based on transport theory. In particular, the elliptic flow in collisions of neutron-rich heavy-ion systems emerges as an observable sensitive to the strength of the symmetry energy at supra-saturation densities. The comparison of ratios or differences of neutron and proton flows or neutron and hydrogen flows with predictions of transport models favors an approximately linear density dependence, consistent with ab-initio nuclear-matter theories. Extensive parameter searches have shown that the model dependence is comparable to the uncertainties of existing experimental data. Comprehensive new flow data of high accuracy, partly also through providing stronger constraints on model parameters, can thus be expected to improve our knowledge of the equation of state of asymmetric nuclear matter.Comment: 20 pages, 24 figures, review to appear in EPJA special volume on nuclear symmetry energ

    Aggressive Surveillance Is Needed to Detect Endoleaks and Junctional Separation between Device Components after Zenith Fenestrated Aortic Reconstruction

    Get PDF
    Background Junctional separation and resulting type IIIa endoleak is a well-known problem after EVAR (endovascular aneurysm repair). This complication results in sac pressurization, enlargement, and eventual rupture. In this manuscript, we review the incidence of this late finding in our experience with the Cook Zenith fenestrated endoprosthesis (ZFEN, Bloomington, IN). Methods A retrospective review was performed of a prospectively maintained institutional ZFEN fenestrated EVAR database capturing all ZFENs implanted at a large-volume, academic hospital system. Patients who experienced junctional separation between the fenestrated main body and distal bifurcated graft (with or without type IIIa endoleak) at any time after initial endoprosthesis implantation were subject to further evaluation of imaging and medical records to abstract clinical courses. Results In 110 ZFENs implanted from October 2012 to December 2017 followed for a mean of 1.5 years, we observed a 4.5% and 2.7% incidence of clinically significant junctional separation and type IIIa endoleak, respectively. Junctional separation was directly related to concurrent type Ib endoleak in all 5 patients. Three patients presented with sac enlargement. One patient did not demonstrate any evidence of clinically significant endoleak and had a decreasing sac size during follow-up imaging. The mean time to diagnosis of modular separation in these patients was 40 months. Junctional separation was captured in surveillance in 2 patients and reintervened upon before manifestation of endoleak. However, the remaining 3 patients completed modular separation resulting in rupture and emergent intervention in 2 and an aortic-related mortality in the other. Conclusions Junctional separation between the fenestrated main and distal bifurcated body with the potential for type IIIa endoleak is an established complication associated with the ZFEN platform. Therefore, we advocate for maximizing aortic overlap during the index procedure followed by aggressive surveillance and treatment of stent overlap loss captured on imaging

    Impulse Response Measurements Over Space-Earth Paths Using the GPS Coarse/Acquisition Codes

    Get PDF
    The impulse responses of radio transmission channels over space-earth paths were measured using the course/acquisition code signals from the Global Positioning System of satellites. The data acquisition system and signal processing techniques used to develop the impulse responses are described. Examples of impulse response measurements are presented. The results indicate that this measurement approach enables detection of multipath signals that are 20 dB or more below the power of the direct arrival. Channel characteristics that could be investigated with additional measurements and analyses are discussed

    EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds.</p> <p>Results</p> <p>We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization.</p> <p>Conclusion</p> <p>EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.</p

    Codeless GPS Applications to Multi-Path: CGAMP

    Get PDF
    Cordless Global Positioning System (GPS) Applications to Multi-Path (CGAMP) is meeting the challenge of exploiting the L-band signals from the Global Positioning System (GPS) satellites for the measurement of the impulse response of radio transmission channels over space-Earth paths. This approach was originally suggested by E. K. Smith and has been pursued by J. Lemmon, without an affordable implementation being identifiable. In addition to the high cost of a suitable P code correlating GPS receiver, there is also the major impediment of the often announced Department of Defense policy of selective availability/anti-spoof (SA/AS) that clouds reliable access to the wideband (20 MHz) P channel of the GPS signals without cryptographic access. A technique proposed by MacDoran utilizes codeless methods for exploiting the P channel signals implemented by the use of a pair of antennas and cross correlation signal detection

    Molecular Density Functional Theory of Water describing Hydrophobicity at Short and Long Length Scales

    Full text link
    We present an extension of our recently introduced molecular density functional theory of water [G. Jeanmairet et al., J. Phys. Chem. Lett. 4, 619, 2013] to the solvation of hydrophobic solutes of various sizes, going from angstroms to nanometers. The theory is based on the quadratic expansion of the excess free energy in terms of two classical density fields, the particle density and the multipolar polarization density. Its implementation requires as input a molecular model of water and three measurable bulk properties, namely the structure factor and the k-dependent longitudinal and transverse dielectric susceptibilities. The fine three-dimensional water structure around small hydrophobic molecules is found to be well reproduced. In contrast the computed solvation free-energies appear overestimated and do not exhibit the correct qualitative behavior when the hydrophobic solute is grown in size. These shortcomings are corrected, in the spirit of the Lum-Chandler-Weeks theory, by complementing the functional with a truncated hard-sphere functional acting beyond quadratic order in density. It makes the resulting functional compatible with the Van-der-Waals theory of liquid-vapor coexistence at long range. Compared to available molecular simulations, the approach yields reasonable solvation structure and free energy of hard or soft spheres of increasing size, with a correct qualitative transition from a volume-driven to a surface-driven regime at the nanometer scale.Comment: 24 pages, 8 figure

    Recovery of surface reflectance spectra and evaluation of the optical depth of aerosols in the near-IR using a Monte-Carlo approach: Application to the OMEGA observations of high latitude regions of Mars

    Full text link
    We present a model of radiative transfer through atmospheric particles based on Monte Carlo methods. This model can be used to analyze and remove the contribution of aerosols in remote sensing observations. We have developed a method to quantify the contribution of atmospheric dust in near-IR spectra of the Martian surface obtained by the OMEGA imaging spectrometer on board Mars Express. Using observations in the nadir pointing mode with significant differences in solar incidence angles, we can infer the optical depth of atmospheric dust, and we can retrieve the surface reflectance spectra free of aerosol contribution. Martian airborne dust properties are discussed and constrained from previous studies and OMEGA data. We have tested our method on a region at 90{\deg}E and 77{\deg}N extensively covered by OMEGA, where significant variations of the albedo of ice patches in the visible have been reported. The consistency between reflectance spectra of ice-covered and ice-free regions recovered at different incidence angles validates our approach. The optical depth of aerosols varies by a factor 3 in this region during the summer of Martian year 27. The observed brightening of ice patches does not result from frost deposition but from a decrease in the dust contamination of surface ice and (to a lower extent) from a decrease in the optical thickness of atmospheric dust. Our Monte Carlo-based model can be applied to recover the spectral reflectance characteristics of the surface from OMEGA spectral imaging data when the optical thickness of aerosols can be evaluated. It could prove useful for processing image cubes from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter (MRO)

    RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Get PDF
    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org
    • …
    corecore