88 research outputs found

    Dormant phages of Helicobacter pylori reveal distinct populations in Europe

    Get PDF
    Prophages of Helicobacter pylori, a bacterium known to co-evolve in the stomach of its human host, were recently identified. However, their role in the diversity of H. pylori strains is unknown. We demonstrate here and for the first time that the diversity of the prophage genes offers the ability to distinguish between European populations, and that H. pylori prophages and their host bacteria share a complex evolutionary history. By comparing the phylogenetic trees of two prophage genes (integrase and holin) and the multilocus sequence typing (MLST)-based data obtained for seven housekeeping genes, we observed that the majority of the strains belong to the same phylogeographic group in both trees. Furthermore, we found that the Bayesian analysis of the population structure of the prophage genes identified two H. pylori European populations, hpNEurope and hpSWEurope, while the MLST sequences identified one European population, hpEurope. The population structure analysis of H. pylori prophages was even more discriminative than the traditional MLST-based method for the European population. Prophages are new players to be considered not only to show the diversity of H. pylori strains but also to more sharply define human populations.University of Malaya-Ministry of Education (UM-MoE) High Impact Research (HIR) Grant UM.C/HIR/MOHE/13/5 (h-50001-00-A000033) and by the Fundação para a Ciência e a Tecnologia (FCT) project grant PTDC/EBB-EBI/119860/2010

    Comparison of methods for detection of plasmid-mediated and chromosomally encoded colistin resistance in Enterobacteriaceae.

    Get PDF
    Because of the emergence of plasmid-mediated (mcr-1 and mcr-2 genes) and chromosomally encoded colistin resistance, reliable methods for detecting colistin resistance/susceptibility in routine laboratories are required. We evaluated the respective performances of the BD Phoenix automated system, the newly developed Rapid Polymyxin NP test and the broth microdilution (BMD) reference method to detect colistin resistance in Enterobacteriaceae, and particularly those producing mcr-1 and mcr-2. Colistin susceptibility of 123 enterobacterial clinical isolates (40 colistin-susceptible and 83 colistin-resistant isolates) was tested with the BD Phoenix automated system, the Rapid Polymyxin NP test and the BMD method. Molecular mechanisms responsible for plasmid-mediated and chromosomally encoded colistin resistance mechanisms were investigated by PCR and sequencing. Considering BMD as a reference method, the BD Phoenix system failed to detect ten colistin-resistant isolates (one Escherichia coli, one Klebsiella pneumoniae, seven Enterobacter species and one Salmonella enterica). The Rapid Polymyxin NP test failed to detect the same single E. coli isolate. Those two latter methods detected the 16 E. coli, K. pneumoniae and S. enterica isolates producing the plasmid-encoded mcr-1 and mcr-2. The BD Phoenix system and the Rapid Polymyxin NP test are reliable techniques for detecting plasmid-mediated mcr-1 and mcr-2-related colistin resistance. However, a high rate of false susceptibility was observed with the BD Phoenix system, indicating that susceptibility results obtained with that system should be confirmed by BMD method. By contrast, the Rapid Polymyxin NP test showed a good agreement with the BMD method, and results were obtained rapidly (within 2 hours). The BMD method should be performed if minimum inhibitory concentration values are needed

    Genomes of Helicobacter pylori prophages

    Get PDF
    Nearly 20% of the Helicobacter pylori genomes carry prophages genes. Recently we were able to clearly differentiate four populations of prophages according to geographical origin of host strain. Interestingly we were able to discriminate between Northern Europe and Southern Europe using a phage sequence typing based on 2 prophage genes of H. pylori (integrase and holin) but present in only a minority of strains.info:eu-repo/semantics/publishedVersio

    DPO multiplex PCR as an alternative to culture and susceptibility testing to detect Helicobacter pylori and its resistance to clarithromycin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrolide resistance in <it>Helicobacter pylori </it>is the major risk factor for treatment failure when using a proton pump inhibitor-clarithromycin containing therapy. Macrolide resistance is due to a few mutations on the 23S ribomosal subunit encoded by the 23S rRNA gene. The present study aimed at investigating the performance of the dual priming oligonucleotide (DPO)-PCR kit named Seeplex<sup>® </sup>ClaR-<it>H. pylori </it>ACE detection designed to detect <it>H. pylori </it>and two types of point mutations causing clarithromycin resistance in <it>H. pylori</it>.</p> <p>Methods</p> <p>The performance of Seeplex<sup>® </sup>ClaR-<it>H. pylori </it>ACE detection was evaluated on 127 gastric biopsies in comparison to conventional bacterial culture followed by the determination of susceptibility to clarithromycin by E-test, as well as by an in-house real-time PCR using a fluorescence resonance energy transfer (FRET) technology.</p> <p>Results</p> <p>Considering culture as the reference test, the sensitivity of DPO-PCR and real-time FRET-PCR was 97.7% and 100% while specificity was 83.1% and 80.7%, respectively. However, both PCR were concordant in detecting 14 <it>H. pylori </it>positive cases which were negative by culture. Globally, E-test and DPO-PCR were concordant with regard to clarithromycin susceptibility in 95.3% of the cases (41/43), while real-time FRET-PCR and DPO-PCR were concordant in 95% (57/60).</p> <p>Conclusion</p> <p>The DPO-PCR is an interesting tool to detect <it>H. pylori </it>on gastric biopsies and to study its susceptibility to clarithromycin in laboratories that cannot perform real-time PCR assays.</p

    Distinct Campylobacter fetus lineages adapted as livestock pathogens and human pathobionts in the intestinal microbiota

    Get PDF
    Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathoge

    Clades of huge phages from across Earth's ecosystems

    Get PDF
    Bacteriophages typically have small genomes and depend on their bacterial hosts for replication. Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems

    Helicobacter pylori Infection of Gastrointestinal Epithelial Cells in vitro Induces Mesenchymal Stem Cell Migration through an NF-κB-Dependent Pathway

    Get PDF
    The role of bone marrow-derived mesenchymal stem cells (MSC) in the physiology of the gastrointestinal tract epithelium is currently not well established. These cells can be recruited in response to inflammation due to epithelial damage, home, and participate in tissue repair. In addition, in the case of tissue repair failure, these cells could transform and be at the origin of carcinomas. However, the chemoattractant molecules responsible for MSC recruitment and migration in response to epithelial damage, and particularly to Helicobacter pylori infection, remain unknown although the role of some chemokines has been suggested. This work aimed to get insight into the mechanisms of mouse MSC migration during in vitro infection of mouse gastrointestinal epithelial cells by H. pylori. Using a cell culture insert system, we showed that infection of gastrointestinal epithelial cells by different H. pylori strains is able to stimulate the migration of MSC. This mechanism involves the secretion by infected epithelial cells of multiple cytokines, with a major role of TNFα, mainly via a Nuclear Factor-kappa B-dependent pathway. This study provides the first evidence of the role of H. pylori infection in MSC migration and paves the way to a better understanding of the role of bone marrow-derived stem cells in gastric pathophysiology and carcinogenesis

    Relationship between H.Pylori infection and clinicopathological features and prognosis of gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aimed to assess the relationship between H.Pylori and the clinicopathological features and prognosis of gastric cancer by quantitative detection of H.Pylori.</p> <p>Methods</p> <p>157 patients were enrolled, all patients had a record of clinicopathological parameters. Specimens including the tumor and non-neoplastic were detected for H.Pylori by Real-Time PCR and analyzed clinical data retrospectively. Variables independently affecting prognosis were investigated by means of multivariate analysis using the Cox proportional hazards model.</p> <p>Results</p> <p>H.Pylori infection was greater in non-neoplastic tissue than the tumor tissue (p < 0.05), H.Pylori infection and its copies were related to the tumor site and N staging (p < 0.05). Overall survival (OS) in all 157 patients has no correlation with the H.Pylori infection status (p = 0.715). As to the patients who underwent a curative surgery, relapse-free survival (RFS) has no correlation with the H.Pylori infection status (p = 0.639). Among the H.Pylori positive patients, OS and RFS of those with higher copies were longer than in patients with low copies, but there was no significant statistical difference.</p> <p>Conclusions</p> <p>H.Pylori infection status and its copies were related to N staging. The OS and RFS in patients with positive H.Pylori status has no significant difference from the patients with negative H.Pylori status.</p

    Human Bone Marrow-Derived Stem Cells Acquire Epithelial Characteristics through Fusion with Gastrointestinal Epithelial Cells

    Get PDF
    Bone marrow-derived mesenchymal stem cells (MSC) have the ability to differentiate into a variety of cell types and are a potential source for epithelial tissue repair. Several studies have demonstrated their ability to repopulate the gastrointestinal tract (GIT) in bone marrow transplanted patients or in animal models of gastrointestinal carcinogenesis where they were the source of epithelial cancers. However, mechanism of MSC epithelial differentiation still remains unclear and controversial with trans-differentiation or fusion events being evoked. This study aimed to investigate the ability of MSC to acquire epithelial characteristics in the particular context of the gastrointestinal epithelium and to evaluate the role of cell fusion in this process. In vitro coculture experiments were performed with three gastrointestinal epithelial cell lines and MSC originating from two patients. After an 8 day coculture, MSC expressed epithelial markers. Use of a semi-permeable insert did not reproduce this effect, suggesting importance of cell contacts. Tagged cells coculture or FISH on gender-mismatched cells revealed clearly that epithelial differentiation resulted from cellular fusion events, while expression of mesenchymal markers on fused cells decreased over time. In vivo cell xenograft in immunodeficient mice confirmed fusion of MSC with gastrointestinal epithelial cells and self-renewal abilities of these fused cells. In conclusion, our results indicate that fusion could be the predominant mechanism by which human MSC may acquire epithelial characteristics when in close contact with epithelial cells from gastrointestinal origin . These results could contribute to a better understanding of the cellular and molecular mechanisms allowing MSC engraftment into the GIT epithelium
    corecore