131 research outputs found

    Challenges in the delivery of e-government through kiosks

    Get PDF
    Kiosks are increasingly being heralded as a technology through which governments, government departments and local authorities or municipalities can engage with citizens. In particular, they have attractions in their potential to bridge the digital divide. There is some evidence to suggest that the citizen uptake of kiosks and indeed other channels for e-government, such as web sites, is slow, although studies on the use of kiosks for health information provision offer some interesting perspectives on user behaviour with kiosk technology. This article argues that the delivery of e-government through kiosks presents a number of strategic challenges, which will need to be negotiated over the next few years in order that kiosk applications are successful in enhancing accessibility to and engagement with e-government. The article suggests that this involves consideration of: the applications to be delivered through a kiosk; one stop shop service and knowledge architectures; mechanisms for citizen identification; and, the integration of kiosks within the total interface between public bodies and their communities. The article concludes by outlining development and research agendas in each of these areas.</p

    Climate change impacts on the Upper Indus hydrology : sources, shifts and extremes

    Get PDF
    This study was undertaken under the Indus Basin Programme of ICIMOD, funded in part by the United Kingdom's Department for International Development (DFID), through their financial support of core research at ICIMOD. This work is partly carried out by the Himalayan Adaptation, Water and Resilience (HI-AWARE) consortium under the Collaborative Adaptation Research Initiative in Africa and Asia (CARIAA) with financial support from the United Kingdom's Department for International Development (DFID) and the International Development Research Centre (IDRC), Ottawa, Canada.The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members

    The Dutch Y-chromosomal landscape

    Get PDF
    Previous studies indicated existing, albeit limited, genetic-geographic population substructure in the Dutch population based on genome-wide data and a lack of this for mitochondrial SNP based data. Despite the aforementioned studies, Y-chromosomal SNP data from the Netherlands remain scarce and do not cover the territory of the Netherlands well enough to allow a reliable investigation of genetic-geographic population substructure. Here we provide the first substantial dataset of detailed spatial Y-chromosomal haplogroup information in 2085 males collected across the Netherlands and supplemented with previously published data from northern Belgium. We found Y-chromosomal evidence for genetic-geographic population substructure, and several Y-haplogroups demonstrating significant clinal frequency distributions in different directions. By means of prediction surface maps we could visualize (complex) distribution patterns of individual Y-haplogroups in detail. These results highlight the value of a micro-geographic approach and are of great use for forensic and epidemiological investigations and our understanding of the Dutch population history. Moreover, the previously noted absence of genetic-geographic population substructure in the Netherlands based on mitochondrial DNA in contrast to our Y-chromosome results, hints at different population histories for women and men in the Netherlands.Molecular Technology and Informatics for Personalised Medicine and Healt

    Clinal distribution of human genomic diversity across the Netherlands despite archaeological evidence for genetic discontinuities in Dutch population history

    Get PDF
    Background: The presence of a southeast to northwest gradient across Europe in human genetic diversity is a well-established observation and has recently been confirmed by genome-wide single nucleotide polymorphism (SNP) data. This pattern is traditionally explained by major prehistoric human migration events in Palaeolithic and Neolithic times. Here, we investigate whether (similar) spatial patterns in human genomic diversity also occur on a micro-geographic scale within Europe, such as in the Netherlands, and if so, whether these patterns could also be explained by more recent demographic events, such as those that occurred in Dutch population history.Methods: We newly collected data on a total of 999 Dutch individuals sampled at 54 sites across the country at 443,816 autosomal SNPs using the Genome-Wide Human SNP Array 5.0 (Affymetrix). We studied the individual genetic relationships by means of classical multidimensional scaling (MDS) using different genetic distance matrices, spatial ancestry analysis (SPA), and ADMIXTURE software. We further performed dedicated analyses to search for spatial patterns in the genomic variation and conducted simulations (SPLATCHE2) to provide a historical interpretation of the observed spatial patterns.Results: We detected a subtle but clearly noticeable genomic population substructure in the Dutch population, allowing differentiation of a north-eastern, central-western, central-northern and a southern group. Furthermore, we observed a statistically significant southeast to northwest cline in the distribution of genomic diversity across the Netherlands, similar to earlier findings from across Europe. Simulation analyses indicate that this genomic gradient could similarly be caused by ancient as well as by the more recent events in Dutch history.Conclusions: Considering the strong archaeological evidence for genetic discontinuity in the Netherlands, we interpret the observed clinal pattern of genomic diversity as being caused by recent rather than ancient events in Dutch population history. We therefore suggest that future human population genetic studies pay more attention to recent demographic history in interpreting genetic clines. Furthermore, our study demonstrates that genetic population substructure is detectable on a small geographic scale in Europe despite recent demographic events, a finding we consider potentially relevant for future epidemiological and forensic studies

    Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya

    Get PDF
    Ice cliff backwasting on debris-covered glaciers is recognized as an important mass-loss process that is potentially responsible for the debris-cover anomaly, i.e. the fact that debris-covered and debris-free glacier tongues appear to have similar thinning rates in the Himalaya. In this study, we quantify the total contribution of ice cliff backwasting to the net ablation of the tongue of Changri Nup Glacier, Nepal, between 2015 and 2017. Detailed backwasting and surface thinning rates were obtained from terrestrial photogrammetry collected in November 2015 and 2016, unmanned air vehicle (UAV) surveys conducted in November 2015, 2016 and 2017, and Pléiades tri-stereo imagery obtained in November 2015, 2016 and 2017. UAV- and Pléiades-derived ice cliff volume loss estimates were 3&thinsp;% and 7&thinsp;% less than the value calculated from the reference terrestrial photogrammetry. Ice cliffs cover between 7&thinsp;% and 8&thinsp;% of the total map view area of the Changri Nup tongue. Yet from November 2015 to November 2016 (November 2016 to November 2017), ice cliffs contributed to 23±5&thinsp;% (24±5&thinsp;%) of the total ablation observed on the tongue. Ice cliffs therefore have a net ablation rate 3.1±0.6 (3.0±0.6) times higher than the average glacier tongue surface. However, on Changri Nup Glacier, ice cliffs still cannot compensate for the reduction in ablation due to debris-cover. In addition to cliff enhancement, a combination of reduced ablation and lower emergence velocities could be responsible for the debris-cover anomaly on debris-covered tongues.</p

    Importance and vulnerability of the world’s water towers

    Get PDF
    Mountains are the water towers of the world, supplying a substantial part of both natural and anthropogenic water demands1,2. They are highly sensitive and prone to climate change3,4, yet their importance and vulnerability have not been quantified at the global scale. Here, we present a global Water Tower Index, which ranks all water towers in terms of their water-supplying role and the downstream dependence of ecosystems and society. For each tower, we assess its vulnerability related to water stress, governance, hydropolitical tension and future climatic and socio-economic changes. We conclude that the most important water towers are also among the most vulnerable, and that climatic and socio-economic changes will affect them profoundly. This could negatively impact 1.9 billion people living in (0.3 billion) or directly downstream of (1.6 billion) mountain areas. Immediate action is required to safeguard the future of the world’s most important and vulnerable water towers
    corecore