207 research outputs found

    Exploring HR practitioners’ perspective on employer branding and its role in organisational attractiveness and talent management

    Get PDF
    © 2017, © Emerald Publishing Limited. Purpose: The latest research in the field of employer branding highlights a mix of marketing principles and recruitment practices, based on the concept that, just as customers have perceptions of an organisation’s brand, then so do other stakeholders including employees. However, the emphasis has been on organisations, which predominantly operate in developed countries typically with Westernised-individualistic cultures. This paper aims to investigate employer branding for service organisations’ image and attraction as an employer in a non-Western culture. Design/methodology/approach: This study examines the perceptions of human resources’ professionals and practitioners on the role of employer branding in employer attractiveness and talent management, within Mauritian banking sector. The data collection for this qualitative study involved semi-structured interviews with senior managers from Mauritian banking organisations, including multinational enterprises, small business unit banks and Mauritian banks. Findings: Analysis of the findings showed that organisations, and banks in this case, are increasingly competing to attract highly skilled personnel in various professional areas; therefore, those organisations that attract the best talent will have a distinct edge in the marketplace. Furthermore, findings from the semi-structured interviews with senior managers suggest that employer branding remains at the embryonic stage within the Mauritian banking sector; therefore, a clear need exists for a more developed strategy. Research limitations/implications: The outcomes of this study call for re-engineering with regards to managerial collaboration in organisations for the successful design and implementation of the employer branding strategy. The empirical findings from the Mauritian banking sector show that the strategic position occupied by the human resource function is still at an embryonic stage as regards with the competitiveness of banks as service organisations. Practical implications: The study presents a need for the development and maintenance of long-term collaborative and trust-based relationships between the human resource and marketing functions. Originality/value: The insights provided through this study addresses the dearth of academic research on employer branding on the African continent while providing invaluable information from a human resource professional perspective

    Chemical diversity of gas in distant galaxies: The metal and dust enrichment and variations within absorbing galaxies

    Full text link
    The chemical composition of gas in galaxies can be measured in detail from absorption spectroscopy. By studying gas in galaxies in this way, it is possible to investigate the small and faint galaxies, which are the most numerous in the universe. In particular, the chemical distribution of gas in absorbing systems gives us insight into cycles of gas in and around galaxies. Here we study chemical enrichment within 64 Damped Lyman-alpha Absorption (DLA) systems between 1.7<z<4.21.7 < z < 4.2. We use high-resolution spectra from VLT/UVES to infer dust depletion from relative abundances of several metals. We perform a component-by-component analysis within DLAs, and characterise variations in their chemical enrichment. Unlike hydrogen, the metal columns can be characterised for individual components. We use them to derive the dust depletion ([Zn/Fe]fit), as an indicator for chemical enrichment. We find that some DLAs are chemically diverse within themselves, with [Zn/Fe]fit ranging up to 0.62 dex within a single system. This suggests that absorbing gas within these galaxies is chemically diverse. Although we do not find a clear trend of decreasing dust depletion with redshift, we do see that the most chemically enriched systems are at lower redshifts. We also observe evidence for dust-poor components at all redshifts, which may be due to the accretion of pristine gas onto galaxies. We combine the chemical and kinematic properties of the individual gas components and observe potential signatures of infalling gas, with low depletion at velocities below \sim100km/s, and outflows, with high depletion and velocities of \sim600km/s. We find over-abundances of alpha-elements (an enhancement of \sim0.3dex) and under-abundances of Mn in several components, which is likely a signature of core-collapse SNe nucleosythesis in the ISM. We observe these effects mostly at lower levels of chemical enrichment.Comment: 56 pages, 99 figures, Accepted for publication in A&A, Abstract abridged for arXi

    Dust depletion of of metals from local to distant galaxies II: Cosmic dust-to-metal ratio and dust composition

    Full text link
    The evolution of the cosmic dust content and the cycle between metals and dust in the interstellar medium (ISM) play a fundamental role in galaxy evolution. The chemical enrichment of the Universe can be traced through the evolution of the dust-to-metals ratio (DTM) and the dust-to-gas ratio (DTG) with metallicity. We use a novel method to determine mass estimates of the DTM, DTG and dust composition based on our previous measurements of the depletion of metals in different environments (the Milky Way, the Magellanic Clouds, and damped Lyman-α\alpha absorbers, DLAs, toward quasars and towards gamma-ray bursts, GRBs), which were calculated from the relative abundances of metals in the ISM through absorption-line spectroscopy column densities observed mainly from VLT/UVES and X-shooter, and HST/STIS. We derive the dust extinction from the estimated dust depletion (AV,deplA_{V, \rm depl}) and compare with the AVA_{V} from extinction. We find that the DTM and DTG ratios increase with metallicity and with the dust tracer [Zn/Fe]. This suggests that grain growth in the ISM is a dominant process of dust production. The increasing trend of the DTM and DTG with metallicity is in good agreement with a dust production and evolution model. Our data suggest that the stellar dust yield is much lower than the metal yield and thus that the overall amount of dust in the warm neutral medium that is produced by stars is much lower. We find that AV,deplA_{V,\rm depl} is overall lower than AV,extA_{V, \rm ext} for the Milky Way and a few Magellanic Clouds lines of sight, a discrepancy that is likely related to the presence of carbonaceous dust. We show that the main elements that contribute to the dust composition are, O, Fe, Si, Mg, C, S, Ni and Al for all the environments. Abundances at low dust regimes suggest the presence of pyroxene and metallic iron in dust.Comment: Accepted for publication in A&A. Abstract abridge

    Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Greece

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inheritance of a mutation in either <it>BRCA1 </it>or <it>BRCA2 </it>accounts for approximately 5% of all breast cancer cases, but varies by country. Investigations into the contribution of <it>BRCA </it>mutations to breast cancer incidence in Greece have been, for the most part, limited by small sample sizes and by the use of cases selected for their family history of cancer. The aim of the current study was to estimate <it>BRCA </it>mutation frequencies in breast cancer patients unselected for family history.</p> <p>Methods</p> <p>To do so, we enrolled 127 unselected women with breast cancer from the Alexandra Hospital in Athens, Greece, a large public hospital in the city. Mutations in <it>BRCA1 </it>and <it>BRCA2 </it>were detected using a combination of techniques and were confirmed by direct sequencing. Two large genomic deletions were sought using mutation-specific assays. A detailed family history of cancer was obtained from each patient.</p> <p>Results</p> <p>We were able to successfully complete testing on samples from 127 women. Among these, six mutations were identified (four in <it>BRCA1 </it>and two in <it>BRCA2</it>) representing 4.7% of the total or 9.5% of cases diagnosed before age forty. None of the mutation carriers had a family history of breast or ovarian cancer. Three of the four <it>BRCA1 </it>mutations were in exon 20: two were a G5331A mutation and the third was a 3.2 kb deletion. The fourth <it>BRCA1 </it>mutation was the 3819delGTAAA in exon 11. The two <it>BRCA2 </it>mutations were in exon 11 (3782del10 and 4512insT).</p> <p>Conclusions</p> <p>The G5331A mutation in <it>BRCA1 </it>appears to be a founder mutation in the Greek population.</p

    Fungal diversity associated to the olive moth, prays oleae Bernard : a survey for potential entomopathogenic fungi

    Get PDF
    Olive production is one of the main agricultural activities in Portugal. In the region of Trás-os-Montes this crop has been considerably affected by Prays oleae. In order to evaluate the diversity of fungi on P. oleae population of Trás-os-Montes olive orchards, larvae and pupae of the three annual generations (phyllophagous, antophagous and carpophagous) were collected and evaluated for fungal growth on their surface. From the 3828 larvae and pupae, a high percentage of individuals exhibited growth of a fungal agent (40.6%), particularly those from the phyllophagous generation. From all the moth generations, a total of 43 species from 24 genera were identified, but the diversity and abundance of fungal species differed between the three generations. Higher diversity was found in the carpophagous generation, followed by the antophagous and phyllophagous generations. The presence of fungi displaying entomopathogenic features was highest in the phyllophagous larvae and pupae, being B. bassiana the most abundant taxa. The first report of B. bassiana presence on P. oleae could open new strategies for the biocontrol of this major pest in olive groves, since the use of an already adapted species increases the guarantee of success of a biocontrol approach. The identification of antagonistic fungi able to control agents that cause major olive diseases, such as Verticillium dahliae, will benefit future biological control approaches for limiting this increasingly spreading pathogen.This work was supported by Science and Technology Foundation (Fundação para a Ciência e Tecnologia – FCT) project PTDC/AGR-AAM/102600/2008 “Entomopathogenic fungi associated to olive pests: isolation, characterization and selection for biological control”. The first author is grateful to the Science and Technology Foundation for the PhD grant SFRH/BD/44265/2008

    Dissecting the interstellar medium of a z=6.3 galaxy: X-shooter spectroscopy and HST imaging of the afterglow and environment of the Swift GRB 210905A

    Full text link
    The study of the properties of galaxies in the first billion years after the Big Bang is one of the major topic of current astrophysics. Optical/near-infrared spectroscopy of the afterglows of long Gamma-ray bursts (GRBs) provide a powerful diagnostic tool to probe the interstellar medium (ISM) of their host galaxies and foreground absorbers, even up to the highest redshifts. We analyze the VLT/X-shooter afterglow spectrum of GRB 210905A, triggered by the Swift Neil Gehrels Observatory, and detect neutral-hydrogen, low-ionization, high-ionization, and fine-structure absorption lines from a complex system at z=6.3118, that we associate with the GRB host galaxy. We study the ISM properties of the host system, revealing the metallicity, kinematics and chemical abundance pattern. The total metallicity of the z~6.3 system is [M/H]=-1.72+/-0.13, after correcting for dust-depletion and taking into account alpha-element enhancement. In addition, we determine the overall amount of dust and dust-to-metal mass ratio (DTM) ([Zn/Fe]_fit=0.33+/-0.09, DTM=0.18+/-0.03). We find indications of nucleosynthesis due to massive stars and evidence of peculiar over-abundance of aluminium. From the analysis of fine-structure lines, we determine distances of several kpc for the low-ionization gas clouds closest to the GRB. Those farther distances are possibly due to the high number of ionizing photons. Using the HST/F140W image of the GRB field, we show the GRB host galaxy as well as multiple objects within 2" from the GRB. We discuss the galaxy structure and kinematics that could explain our observations, also taking into account a tentative detection of Lyman-alpha emission. Deep spectroscopic observations with VLT/MUSE and JWST will offer the unique possibility of combining our results with the ionized-gas properties, with the goal of better understanding how galaxies in the reionization era form and evolve.Comment: Accepted Publication (In Press on A&A) - 22 pages, 10 figures, 6 tables - Appendix: 6 figures, 3 table

    The cosmic build-up of dust and metals : Accurate abundances from GRB-selected star-forming galaxies at 1.7 < z < 6.3

    Get PDF
    © 2023 The Author(s), published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The chemical enrichment of dust and metals in the interstellar medium of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG) ratios, and dust-to-metal (DTM) ratios of 36 star-forming galaxies at 1.7 40 000) spectroscopic data, including three new sources, for which at least one refractory (e.g., Fe) and one volatile (e.g., S or Zn) element have been detected at S/N > 3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derived the redshift evolution of the dust-corrected, absorption-line-based gas-phase metallicity, [M/H] tot, in these galaxies, for which we determine a linear relation with redshift [M/H] tot(z) = (- 0.21 ± 0.04)z - (0.47 ± 0.14). We then examined the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction, A V, and the derived depletion level. We used a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the interstellar medium probed by the GRBs, they provide strong implications for studies of dust masses that aim to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime.Peer reviewe

    The cosmic build-up of dust and metals. Accurate abundances from GRB-selected star-forming galaxies at 1.7<z<6.31.7 < z < 6.3

    Get PDF
    The chemical enrichment of dust and metals in the interstellar medium (ISM) of galaxies throughout cosmic time is one of the key driving processes of galaxy evolution. Here we study the evolution of the gas-phase metallicities, dust-to-gas (DTG), and dust-to-metal (DTM) ratios of 36 star-forming galaxies at 1.7<z<6.31.7 < z < 6.3 probed by gamma-ray bursts (GRBs). We compile all GRB-selected galaxies with intermediate (R=7000) to high (R>40,000) resolution spectroscopic data for which at least one refractory (e.g. Fe) and one volatile (e.g. S or Zn) element have been detected at S/N>3. This is to ensure that accurate abundances and dust depletion patterns can be obtained. We first derive the redshift evolution of the dust-corrected, absorption-line based gas-phase metallicity [M/H]tot_{\rm tot} in these galaxies, for which we determine a linear relation with redshift [M/H]tot(z)=(0.21±0.04)z(0.47±0.14){\rm [M/H]_{tot}}(z) = (-0.21\pm 0.04)z -(0.47\pm 0.14). We then examine the DTG and DTM ratios as a function of redshift and through three orders of magnitude in metallicity, quantifying the relative dust abundance both through the direct line-of-sight visual extinction AVA_V and the derived depletion level. We use a novel method to derive the DTG and DTM mass ratios for each GRB sightline, summing up the mass of all the depleted elements in the dust-phase. We find that the DTG and DTM mass ratios are both strongly correlated with the gas-phase metallicity and show a mild evolution with redshift as well. While these results are subject to a variety of caveats related to the physical environments and the narrow pencil-beam sightlines through the ISM probed by the GRBs, they provide strong implications for studies of dust masses to infer the gas and metal content of high-redshift galaxies, and particularly demonstrate the large offset from the average Galactic value in the low-metallicity, high-redshift regime.Comment: Accepted in A&

    Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates. Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS. Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS. Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management
    corecore