41 research outputs found

    Impact of pulmonary exposure to gold core silver nanoparticles of different size and capping agents on cardiovascular injury

    Get PDF
    Background:The uses of engineered nanomaterials have expanded in biomedical technology and consumer manufacturing. Furthermore, pulmonary exposure to various engineered nanomaterials has, likewise, demonstrated the ability to exacerbate cardiac ischemia reperfusion (I/R) injury. However, the influence of particle size or capping agent remains unclear. In an effort to address these influences we explored response to 2 different size gold core nanosilver particles (AgNP) with two different capping agents at 2 different time points. We hypothesized that a pulmonary exposure to AgNP induces cardiovascular toxicity influenced by inflammation and vascular dysfunction resulting in expansion of cardiac I/R Injury that is sensitive to particle size and the capping agent. Methods: Male Sprague–Dawley rats were exposed to 200 μg of 20 or 110 nm polyvinylprryolidone (PVP) or citrate capped AgNP. One and 7 days following intratracheal instillation serum was analyzed for concentrations of selected cytokines; cardiac I/R injury and isolated coronary artery and aorta segment were assessed for constrictor responses and endothelial dependent relaxation and endothelial independent nitric oxide dependent relaxation. Results: AgNP instillation resulted in modest increase in selected serum cytokines with elevations in IL-2, IL-18, and IL-6. Instillation resulted in a derangement of vascular responses to constrictors serotonin or phenylephrine, as well as endothelial dependent relaxations with acetylcholine or endothelial independent relaxations by sodium nitroprusside in a capping and size dependent manner. Exposure to both 20 and 110 nm AgNP resulted in exacerbation cardiac I/R injury 1 day following IT instillation independent of capping agent with 20 nm AgNP inducing marginally greater injury. Seven days following IT instillation the expansion of I/R injury persisted but the greatest injury was associated with exposure to 110 nm PVP capped AgNP resulted in nearly a two-fold larger infarct size compared to naïve. Conclusions: Exposure to AgNP may result in vascular dysfunction, a potentially maladaptive sensitization of the immune system to respond to a secondary insult (e.g., cardiac I/R) which may drive expansion of I/R injury at 1 and 7 days following IT instillation where the extent of injury could be correlated with capping agents and AgNP size.This work was supported by the National Institute of Environmental Health Sciences U19ES019525, U01ES020127, U19ES019544 and East Carolina Universit

    Effect of voltage-gated and capacitative calcium entry blockade on agonist-inducted construction of equine laminar blood vessels

    No full text
    Objective—To characterize the relative contributions of voltage-gated and capacitative Ca²⁺ entry to agonist-induced contractions of equine laminar arteries and veins. Animals—16 adult mixed-breed horses. Procedures—Laminar arteries and veins were isolated and mounted on small vessel myographs for the measurement of isometric tension. Concentration-response curves were obtained for the vasoconstrictor agonists phenylephrine, 5-hydroxytryptamine (5-HT), prostaglandin F2α (PGF2α), and endothelin-1 (ET-1) either in the absence of extracellular Ca²⁺ or in the presence of the voltage-gated Ca²⁺ channel inhibitor diltiazem or the putative inhibitor of capacitative Ca2+ entry, trifluoromethylphenylimidazole. Results—In the absence of extracellular Ca2+, maximal responses of veins to 5-HT, phenylephrine, ET-1 and PGF2α were reduced by 80%, 50%, 50%, and 45%, respectively; responses of arteries to 5-HT, phenylephrine, and ET-1 were reduced by 95%, 90%, and 20%, respectively. Although diltiazem did not affect the maximal responses of veins to any agonist, responses of arteries to 5-HT, phenylephrine, and ET-1 were reduced by 40%, 50%, and 27%, respectively. Trifluoromethylphenylimidazole did not affect maximal responses of veins, but did reduce their contractile responses to low concentrations of ET-1 and PGF2α. Conclusions and Clinical Relevance—Results suggested that the contribution of extracellular Ca²⁺ to laminar vessel contractile responses differs between arteries and veins and also between contractile agonists, voltage-gated Ca²⁺ entry is more predominant in laminar arteries than in veins, and capacitative Ca²⁺ entry has a minor role in agonist-induced contractile responses of laminar veins.John F. Peroni, James N. Moore, Erik Noschka, Tristan H. Lewis, Stephen J. Lewis, Tom P. Robertso

    Two cases of monkeypox imported to the United Kingdom, September 2018

    Get PDF
    In early September 2018, two cases of monkeypox were reported in the United Kingdom (UK), diagnosed on 7 September in Cornwall (South West England) and 11 September in Blackpool (North West England). The cases were epidemiologically unconnected and had recently travelled to the UK from Nigeria, where monkeypox is currently circulating. We describe the epidemiology and the public health response for the first diagnosed cases outside the African continent since 2003

    ZSCAN1 Autoantibodies Are Associated with Pediatric Paraneoplastic ROHHAD.

    No full text
    ObjectiveRapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), is a severe pediatric disorder of uncertain etiology resulting in hypothalamic dysfunction and frequent sudden death. Frequent co-occurrence of neuroblastic tumors have fueled suspicion of an autoimmune paraneoplastic neurological syndrome (PNS); however, specific anti-neural autoantibodies, a hallmark of PNS, have not been identified. Our objective is to determine if an autoimmune paraneoplastic etiology underlies ROHHAD.MethodsImmunoglobulin G (IgG) from pediatric ROHHAD patients (n = 9), non-inflammatory individuals (n = 100) and relevant pediatric controls (n = 25) was screened using a programmable phage display of the human peptidome (PhIP-Seq). Putative ROHHAD-specific autoantibodies were orthogonally validated using radioactive ligand binding and cell-based assays. Expression of autoantibody targets in ROHHAD tumor and healthy brain tissue was assessed with immunohistochemistry and mass spectrometry, respectively.ResultsAutoantibodies to ZSCAN1 were detected in ROHHAD patients by PhIP-Seq and orthogonally validated in 7/9 ROHHAD patients and 0/125 controls using radioactive ligand binding and cell-based assays. Expression of ZSCAN1 in ROHHAD tumor and healthy human brain tissue was confirmed.InterpretationOur results support the notion that tumor-associated ROHHAD syndrome is a pediatric PNS, potentially initiated by an immune response to peripheral neuroblastic tumor. ZSCAN1 autoantibodies may aid in earlier, accurate diagnosis of ROHHAD syndrome, thus providing a means toward early detection and treatment. This work warrants follow-up studies to test sensitivity and specificity of a novel diagnostic test. Last, given the absence of the ZSCAN1 gene in rodents, our study highlights the value of human-based approaches for detecting novel PNS subtypes. ANN NEUROL 2022;92:279-291
    corecore