1,307 research outputs found

    Infrared scintillation yield in gaseous and liquid argon

    Full text link
    The study of primary and secondary scintillations in noble gases and liquids is of paramount importance to rare-event experiments using noble gas media. In the present work, the scintillation yield in gaseous and liquid Ar has for the first time been measured in the near infrared (NIR) and visible region, both for primary and secondary (proportional) scintillations, using Geiger-mode avalanche photodiodes (G-APDs) and pulsed X-ray irradiation. The primary scintillation yield of the fast component was measured to be 17000 photon/MeV in gaseous Ar in the NIR, in the range of 690-1000 nm, and 510 photon/MeV in liquid Ar, in the range of 400-1000 nm. Proportional NIR scintillations (electroluminescence) in gaseous Ar have been also observed; their amplification parameter at 163 K was measured to be 13 photons per drifting electron per kV. Possible applications of NIR scintillations in high energy physics experiments are discussed.Comment: 6 pages, 5 figures. Submitted to Europhysics Letter. Revised Figs. 3 and

    Biochemical assessment of patients following ketogenic diets for epilepsy : current practice in the UK and Ireland

    Get PDF
    Biochemical assessment is recommended for patients prior to initiating and following a ketogenic diet (KD). There is no published literature regarding current practice in the UK and Ireland. We aimed to explore practice in comparison with international guidelines, determine approximate costs of biochemical testing in KD patients across the UK and Ireland, and promote greater consistency in KD services nationally. A survey was designed to determine the biochemical tests requested for patients at baseline, 3, 6, 12, 18, and 24 months + on KD. The survey was circulated to 39 centers across the UK and Ireland. Sixteen centers completed the survey. Full blood count, electrolytes, calcium, liver function tests (LFTs), lipid profile, and vitamin D were requested at all centers at baseline, in keeping with international guidelines. Bicarbonate, total protein, and urinalysis were less consistently requested. Magnesium and zinc were requested by all centers, despite not being specifically recommended for pre-diet evaluation in guidelines. Urea and electrolyte profiles and some LFTs were consistently requested at follow-up, in accordance with guidelines. Other LFTs and renal tests, full blood count, lipid profile, acylcarnitine profile, selenium, vitamin D, and urinalysis were less consistently requested at follow-up. The mean costs of the lowest and highest number of tests requested at baseline in our participating centers were £167.54 and £501.93; the mean costs of the lowest and highest number of tests requested at 3-month follow-up were £19.17 and £450.06. Biochemical monitoring of KD patients varies widely across the UK and Ireland and does not fully correspond to international best practice guidelines. With an ongoing drive for cost-effectiveness within health care, further work is needed to streamline practice while ensuring patient safety. [Abstract copyright: © 2019 The Authors. Epilepsia Open published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy.

    An investigation into the age and origin of Suranga in the foothills of the Western Ghats of India

    Get PDF
    This document is the Accepted Manuscript version. The final publication is available at Springer via: https://doi.org/10.1007/s12685-015-0125-yThis paper presents the evidence for determining the age and origin of suranga irrigation found mainly in southern Karnataka and northern Kerala in the foothills of the Western Ghats of south India. It draws on on-going research that has attempted to use an interdisciplinary approach to date the system using Indian Archives, British and Portuguese colonial archives, etymology, oral testimony archaeology, phenology and palaeo dating techniques. The results from this study put the origins of the system at around 1900–1940 CE. These results are compared with the current academic discourse that supports the view that the system originates from ancient Persia and qanat technology, because of the long established trade links with Persia and the Arabian Peninsula in the Malabar region. We argue that a new ‘origin discourse’ should be framed around these much more recent dates. The methodological constraints behind both theories are discussed throughout to enable the reader to appreciate the limitations of both arguments.Peer reviewedFinal Accepted Versio

    Argon Purification Studies and a Novel Liquid Argon Re-circulation System

    Full text link
    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficacy of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O_2, H_2O, N_2 and CO_2 in the range of between 0.01 ppm to 1000 ppm - H_2O was found to have the most profound effect on gaseous argon scintillation light, and N_2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O_2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N_2 gas and H_2O vapour has been quantified using BET isotherm analysis. The efficiency of Cu and P_2O5 at removing O_2 and H_2O impurities from 1 bar N6 argon gas at both room temperature and -130 ^oC was investigated and found to be high. A novel, highly scalable LAr re-circulation system has been developed. The complete system, consisting of a motorised bellows pump operating in liquid and a purification cartridge, were designed and built in-house. The system was operated successfully over many days and achieved a re-circulation rate of 27 litres/hour and high purity

    Observation of light echoes around very young stars

    Full text link
    The goal of the paper is to present new results on light echoes from young stellar objects. Broad band CCD images were obtained over three months at one-to-two week intervals for the field of NGC 6726, using the large field-of-view remotely-operated telescope on top of Cerro Burek. We detected scattered light echoes around two young, low-amplitude, irregular variable stars. Observations revealed not just one, but multiple light echoes from brightness pulses of the T Tauri star S CrA and the Herbig Ae/Be star R CrA. Analysis of S CrA's recurring echoes suggests that the star is located 138 +/- 16 pc from Earth, making these the closest echoes ever detected. The environment that scatters the stellar light from S CrA is compatible with an incomplete dust shell or an inclined torus some 10,000 AU in radius and containing \sim 2×1032 \times 10^{-3} M_{\sun} of dust. The cause of such concentration at \sim 10,000AU from the star is unknown. It could be the remnant of the envelope from which the star formed, but the distance of the cloud is remarkably similar to the nominal distance of the Oort cloud to the Sun, leading us to also speculate that the dust (or ice) seen around S CrA might have the same origin as the Solar System Oort cloud.Comment: A&A, in press Received: 16 March 2010 / Accepted: 01 June 201

    The ArDM experiment

    Get PDF
    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta Physica Polonica

    First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches

    Full text link
    ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30\,keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.Comment: 14 pages, 10 figures, v2 accepted for publication in JINS

    Optical and Quasi-Optical Analysis of System Components for a Far-Infrared Space Interferometer

    Get PDF
    Many important astrophysical processes occur at wavelengths that fall within the far-infrared band of the EM spectrum, and over distance scales that require sub-arc second spatial resolution. It is clear that in order to achieve sub-arc second resolution at these relatively long wavelengths (compared to optical/near-IR), which are strongly absorbed by the atmosphere, a space-based far-IR interferometer will be required. We present analysis of the optical system for a proposed spatial-spectral interferometer, discussing the challenges that arise when designing such a system and the simulation techniques employed that aim to resolve these issues. Many of these specific challenges relate to combining the beams from multiple telescopes where the wavelengths involved are relatively short (compared to radio interferometry), meaning that care must be taken with mirror surface quality, where surface form errors not only present potential degradation of the single system beams, but also serve to reduce fringe visibility when multiple telescope beams are combined. Also, the long baselines required for sub-arc second resolution present challenges when considering propagation of the relatively long wavelengths of the signal beam, where beam divergence becomes significant if the beam demagnification of the telescopes is not carefully considered. Furthermore, detection of the extremely weak far-IR signals demands ultra-sensitive detectors and instruments capable of operating at maximum efficiency. Thus, as will be shown, care must be taken when designing each component of such a complex quasioptical system

    The Physics of turbulent and dynamically unstable Herbig-Haro jets

    Full text link
    The overall properties of the Herbig-Haro objects such as centerline velocity, transversal profile of velocity, flow of mass and energy are explained adopting two models for the turbulent jet. The complex shapes of the Herbig-Haro objects, such as the arc in HH34 can be explained introducing the combination of different kinematic effects such as velocity behavior along the main direction of the jet and the velocity of the star in the interstellar medium. The behavior of the intensity or brightness of the line of emission is explored in three different cases : transversal 1D cut, longitudinal 1D cut and 2D map. An analytical explanation for the enhancement in intensity or brightness such as usually modeled by the bow shock is given by a careful analysis of the geometrical properties of the torus.Comment: 17 pages, 10 figures. Accepted for publication in Astrophysics & Spac
    corecore