188 research outputs found
Evaluation of New Density Functional with Account of van der Waals Forces by Use of Experimental H2 Physisorption Data on Cu(111)
Detailed experimental data for physisorption potential-energy curves of H2 on
low-indexed faces of Cu challenge theory. Recently, density-functional theory
has been developed to also account for nonlocal correlation effects, including
van der Waals forces. We show that one functional, denoted vdW-DF2, gives a
potential-energy curve promisingly close to the experiment-derived
physisorptionenergy curve. The comparison also gives indications for further
improvements of the functionals
Noncovalent Interactions by QMC: Speedup by One-Particle Basis-Set Size Reduction
While it is empirically accepted that the fixed-node diffusion Monte-Carlo
(FN-DMC) depends only weakly on the size of the one-particle basis sets used to
expand its guiding functions, limits of this observation are not settled yet.
Our recent work indicates that under the FN error cancellation conditions,
augmented triple zeta basis sets are sufficient to achieve a benchmark level of
0.1 kcal/mol in a number of small noncovalent complexes. Here we report on a
possibility of truncation of the one-particle basis sets used in FN-DMC guiding
functions that has no visible effect on the accuracy of the production FN-DMC
energy differences. The proposed scheme leads to no significant increase in the
local energy variance, indicating that the total CPU cost of large-scale
benchmark noncovalent interaction energy FN-DMC calculations may be reduced.Comment: ACS book chapter, accepte
Global hybrids from the semiclassical atom theory satisfying the local density linear response
We propose global hybrid approximations of the exchange-correlation (XC)
energy functional which reproduce well the modified fourth-order gradient
expansion of the exchange energy in the semiclassical limit of many-electron
neutral atoms and recover the full local density approximation (LDA) linear
response. These XC functionals represent the hybrid versions of the APBE
functional [Phys. Rev. Lett. 106, 186406, (2011)] yet employing an additional
correlation functional which uses the localization concept of the correlation
energy density to improve the compatibility with the Hartree-Fock exchange as
well as the coupling-constant-resolved XC potential energy. Broad energetical
and structural testings, including thermochemistry and geometry, transition
metal complexes, non-covalent interactions, gold clusters and small
gold-molecule interfaces, as well as an analysis of the hybrid parameters, show
that our construction is quite robust. In particular, our testing shows that
the resulting hybrid, including 20\% of Hartree-Fock exchange and named hAPBE,
performs remarkably well for a broad palette of systems and properties, being
generally better than popular hybrids (PBE0 and B3LYP). Semi-empirical
dispersion corrections are also provided.Comment: 12 pages, 4 figure
Random-phase approximation and its applications in computational chemistry and materials science
The random-phase approximation (RPA) as an approach for computing the
electronic correlation energy is reviewed. After a brief account of its basic
concept and historical development, the paper is devoted to the theoretical
formulations of RPA, and its applications to realistic systems. With several
illustrating applications, we discuss the implications of RPA for computational
chemistry and materials science. The computational cost of RPA is also
addressed which is critical for its widespread use in future applications. In
addition, current correction schemes going beyond RPA and directions of further
development will be discussed.Comment: 25 pages, 11 figures, published online in J. Mater. Sci. (2012
S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures
With numerous new quantum chemistry methods being developed in recent years and the promise of even more new methods to be developed in the near future, it is clearly critical that highly accurate, well-balanced, reference data for many different atomic and molecular properties be available for the parametrization and validation of these methods. One area of research that is of particular importance in many areas of chemistry, biology, and material science is the study of noncovalent interactions. Because these interactions are often strongly influenced by correlation effects, it is necessary to use computationally expensive high-order wave function methods to describe them accurately. Here, we present a large new database of interaction energies calculated using an accurate CCSD(T)/CBS scheme. Data are presented for 66 molecular complexes, at their reference equilibrium geometries and at 8 points systematically exploring their dissociation curves; in total, the database contains 594 points: 66 at equilibrium geometries, and 528 in dissociation curves. The data set is designed to cover the most common types of noncovalent interactions in biomolecules, while keeping a balanced representation of dispersion and electrostatic contributions. The data set is therefore well suited for testing and development of methods applicable to bioorganic systems. In addition to the benchmark CCSD(T) results, we also provide decompositions of the interaction energies by means of DFT-SAPT calculations. The data set was used to test several correlated QM methods, including those parametrized specifically for noncovalent interactions. Among these, the SCS-MI-CCSD method outperforms all other tested methods, with a root-mean-square error of 0.08 kcal/mol for the S66 data set
Accurate Treatment of Large Supramolecular Complexes by Double-Hybrid Density Functionals Coupled with Nonlocal van der Waals Corrections
In this work, we present a thorough assessment of the performance of some representative double-hybrid density functionals (revPBE0-DH-NL and B2PLYP-NL) as well as their parent hybrid and GGA counterparts, in combination with the most modern version of the nonlocal (NL) van der Waals correction to describe very large weakly interacting molecular systems dominated by noncovalent interactions. Prior to the assessment, an accurate and homogeneous set of reference interaction energies was computed for the supramolecular complexes constituting the L7 and S12L data sets by using the novel, precise, and efficient DLPNO-CCSD(T) method at the complete basis set limit (CBS). The correction of the basis set superposition error and the inclusion of the deformation energies (for the S12L set) have been crucial for obtaining precise DLPNO-CCSD(T)/CBS interaction energies. Among the density functionals evaluated, the double-hybrid revPBE0-DH-NL and B2PLYP-NL with the three-body dispersion correction provide remarkably accurate association energies very close to the chemical accuracy. Overall, the NL van der Waals approach combined with proper density functionals can be seen as an accurate and affordable computational tool for the modeling of large weakly bonded supramolecular systems.Financial support by the “Ministerio de Economía y Competitividad” (MINECO) of Spain and European FEDER funds through projects CTQ2011-27253 and CTQ2012-31914 is acknowledged. The support of the Generalitat Valenciana (Prometeo/2012/053) is also acknowledged. J.A. thanks the EU for the FP7-PEOPLE-2012-IEF-329513 grant. J.C. acknowledges the “Ministerio de Educación, Cultura y Deporte” (MECD) of Spain for a predoctoral FPU grant
Unraveling the performance of dispersion-corrected functionals for the accurate description of weakly bound natural polyphenols
Long-range non-covalent interactions play a key role in the chemistry of natural polyphenols. We have previously proposed a description of supramolecular polyphenol complexes by the B3P86 density functional coupled with some corrections for dispersion. We couple here the B3P86 functional with the D3 correction for dispersion, assessing systematically the accuracy of the new B3P86-D3 model using for that the well-known S66, HB23, NCCE31, and S12L datasets for non-covalent interactions. Furthermore, the association energies of these complexes were carefully compared to those obtained by other dispersion-corrected functionals, such as B(3)LYP-D3, BP86-D3 or B3P86-NL. Finally, this set of models were also applied to a database composed of seven non-covalent polyphenol complexes of the most interest.FDM acknowledges financial support from the Swedish Research Council (Grant No. 621-2014-4646) and SNIC (Swedish National Infrastructure for Computing) for providing computer resources. The work in Limoges (IB and PT) is supported by the “Conseil Régional du Limousin”. PT gratefully acknowledges the support by the Operational Program Research and Development Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic). IB gratefully acknowledges financial support from “Association Djerbienne en France”
Watson–Crick and Sugar-Edge Base Pairing of Cytosine in the Gas Phase: UV and Infrared Spectra of Cytosine·2-Pyridone
While keto-amino cytosine is the dominant species in aqueous solution, spectroscopic studies in molecular beams and in noble gas matrices show that other cytosine tautomers prevail in apolar environments. Each of these offers two or three H-bonding sites (Watson–Crick, wobble, sugar-edge). The mass- and isomer-specific S1 ← S0 vibronic spectra of cytosine·2-pyridone (Cyt·2PY) and 1-methylcytosine·2PY are measured using UV laser resonant two-photon ionization (R2PI), UV/UV depletion, and IR depletion spectroscopy. The UV spectra of the Watson–Crick and sugar-edge isomers of Cyt·2PY are separated using UV/UV spectral hole-burning. Five different isomers of Cyt·2PY are observed in a supersonic beam. We show that the Watson–Crick and sugar-edge dimers of keto-amino cytosine with 2PY are the most abundant in the beam, although keto-amino-cytosine is only the third most abundant tautomer in the gas phase. We identify the different isomers by combining three different diagnostic tools: (1) methylation of the cytosine N1–H group prevents formation of both the sugar-edge and wobble isomers and gives the Watson–Crick isomer exclusively. (2) The calculated ground state binding and dissociation energies, relative gas-phase abundances, excitation and the ionization energies are in agreement with the assignment of the dominant Cyt·2PY isomers to the Watson–Crick and sugar-edge complexes of keto-amino cytosine. (3) The comparison of calculated ground state vibrational frequencies to the experimental IR spectra in the carbonyl stretch and NH/OH/CH stretch ranges strengthen this identification
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field
- …