239 research outputs found

    On-the-job training of clinical officers in Malawi

    Get PDF
    Although Malawi started a Medical College in 1991 to train medical doctors, it continues to face a chronic shortage of medical staff. Malawi Medical Journal Vol. 20 (3) 2008: pp. 74-7

    Chemical Modifications of Gold Surfaces with Basic Groups and a Fluorescent Nanoparticle Adhesion Assay To Determine Their Surface pKa

    Get PDF
    For pharmaceutical, biological, and biomedical applications, the functionalization of gold surfaces with pH-sensitive groups has great potential. The aim of this work was to modify gold surfaces with pH-sensitive groups and to determine the pKa of the modified gold surfaces using a fluorescent nanoparticle adhesion assay. To introduce pH-sensitive groups onto gold surfaces, we modified gold-coated silicon slides with four different bases: 4-mercaptopyridine (4-MP), 4-pyridylethylmercaptan (4-PEM), 4-aminothiophenol (4-ATP), and 2-mercaptoethylamine (2-MEA). To screen whether the modifications were successful, the binding of negatively charged fluorescently labeled nanoparticles to the positively charged surfaces was visualized by fluorescence microscopy and atomic force microscopy. Next, the pKa of the modified surfaces was determined by quantifying the pH-dependent adhesion of the fluorescently labeled nanoparticles with fluorescence spectroscopy. Fluorescence microscopy showed that the gold surfaces were successfully modified with the four different basic molecules. Moreover, fluorescence spectroscopy revealed that fluorescently labeled negatively charged nanoparticles bound onto gold surfaces that were modified with one of the four bases in a pH-dependent manner. By quantifying the adsorption of negatively charged fluorescently labeled nanoparticles onto the functionalized gold surfaces and using the Henderson–Hasselbalch equation, the pKa of these surfaces was determined to be 3.7 ± 0.1 (4-MP), 5.0 ± 0.1 (4-PEM), 5.4 ± 0.1 (4-ATP), and 7.4 ± 0.3 (2-MEA). We successfully functionalized gold surfaces with four different basic molecules, yielding modified surfaces with different pKa values, as determined with a fluorescent nanoparticle adhesion assay.Drug Delivery Technolog

    Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability

    Get PDF
    To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells. PURPOSE METHODS RESULTS CONCLUSIONDrug Delivery Technolog

    Stabilised aluminium phosphate nanoparticles used as vaccine adjuvant

    Get PDF
    Aluminium phosphate is a commonly used adjuvant consisting of heterogeneously sized aggregates up to several micrometers. However, aluminium phosphate nanoparticles may exhibit an improved adjuvant effect. In this study, nanoparticles were made by sonication of commercially available aluminium phosphate adjuvant, resulting in particles with a size (Z-average diameter) between 200-300 nm and a point of zero charge of 4.5. To prevent reaggregation, which occurred within 14 days, a screening of excipients was performed to identify stabilisers effective under physiological conditions (pH 7.4, 290 mOsm). The amino acids threonine, asparagine, and L-alanyl-L-1-aminoethylphosphonic acid (LAPA) stabilised sonicated aluminium phosphate. Particle sizes remained stable between 400-600 nm at 37 °C during 106 days. Contrarily, arginine induced strong reaggregation to a particle size larger than 1000 nm. The stability of aluminium phosphate nanoparticles was strongly affected by the pH. Aggregation mainly occurred below pH 7. The adsorption capacity, a potentially relevant parameter for adjuvants, was slightly reduced in the presence of asparagine, when using a model antigen (lysozyme). LAPA, arginine, threonine and aspartic acid reduced protein adsorption significantly. The adjuvant effect of aluminium phosphate nanoparticles was studied by immunisation of mice with diphtheria toxoid adjuvanted with the aluminium phosphate nanoparticles. The presence of LAPA, threonine, aspartic acid or asparagine did not alter diphtheria toxoid-specific antibody or toxin-neutralising antibody titres. Arginine increased diphtheria toxoid-specific antibody titres but not toxin-neutralising antibody titres. In conclusion, aluminium phosphate nanoparticles were stabilised by particular amino acids and induced an adjuvant effect comparable to that of aluminium phosphate microparticles.Drug Delivery Technolog

    Resting state functional connectivity differences between behavioral variant frontotemporal dementia and Alzheimer's disease

    Get PDF
    Introduction: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. Early differentiation between both types of dementia may be challenging due to heterogeneity and overlap of symptoms. Here, we apply resting state functional magnetic resonance imaging (fMRI) to study functional brain connectivity differences between AD and bvFTD. Methods: We used resting state fMRI data of 31 AD patients, 25 bvFTD patients, and 29 controls from two centers specialized in dementia. We studied functional connectivity throughout the entire brain, applying two different analysis techniques, studying network-to-region and region-to-region connectivity. A general linear model approach was used to study group differences, while controlling for physiological noise, age, gender, study center, and regional gray matter volume. Results: Given gray matter differences, we observed decreased network-to-region connectivity in bvFTD between (a) lateral visual cortical network and lateral occipital and cuneal cortex, and (b) auditory system network and angular gyrus. In AD, we found decreased network-to-region connectivity between the dorsal visual stream network and lateral occipital and parietal opercular cortex. Region-to-region connectivity was decreased in bvFTD between superior temporal gyrus and cuneal, supracalcarine, intracalcarine cortex, and lingual gyrus. Conclusion: We showed that the pathophysiology

    Sensitive Spectroscopic Detection of Large and Denatured Protein Aggregates in Solution by Use of the Fluorescent Dye Nile Red

    Get PDF
    The fluorescent dye Nile red was used as a probe for the sensitive detection of large, denatured aggregates of the model protein β-galactosidase (E. coli) in solution. Aggregates were formed by irreversible heat denaturation of β-galactosidase below and above the protein’s unfolding temperature of 57.4°C, and the presence of aggregates in heated solutions was confirmed by static light scattering. Interaction of Nile red with β-galactosidase aggregates led to a shift of the emission maximum (λmax) from 660 to 611 nm, and to an increase of fluorescence intensity. Time-resolved fluorescence and fluorescence correlation spectroscopy (FCS) measurements showed that Nile red detected large aggregates with hydrodynamic radii around 130 nm. By steady-state fluorescence measurements, it was possible to detect 1 nM of denatured and aggregated β-galactosidase in solution. The comparison with size exclusion chromatography (SEC) showed that native β-galactosidase and small aggregates thereof had no substantial effect on the fluorescence of Nile red. Large aggregates were not detected by SEC, because they were excluded from the column. The results with β-galactosidase demonstrate the potential of Nile red for developing complementary analytical methods that overcome the size limitations of SEC, and can detect the formation of large protein aggregates at early stages

    Effect of near-terminus subglacial hydrology on tidewater glacier submarine melt rates

    Get PDF
    Submarine melting of Greenlandic tidewater glacier termini is proposed as a possiblemechanism driving their recent thinning and retreat. We use a general circulation model, MITgcm, tosimulate water circulation driven by subglacial discharge at the terminus of an idealized tidewater glacier.We vary the spatial distribution of subglacial discharge emerging at the grounding line of the glacier andexamine the effect on submarine melt volume and distribution. We find that subglacial hydrology exerts animportant control on submarine melting; under certain conditions a distributed system can induce a factor5 more melt than a channelized system, with plumes from a single channel inducing melt over only alocalized area. Subglacial hydrology also controls the spatial distribution of melt, which has the potential tocontrol terminus morphology and calving style. Our results highlight the need to constrain near-terminussubglacial hydrology at tidewater glaciers if we are to represent ocean forcing accurately

    Detection and characterization of subvisible aggregates of monoclonal lgG in serum

    Get PDF
    To detect and characterize the aggregation of therapeutic monoclonal antibodies in undiluted biological fluids. Fluorescently labeled subvisible IgG aggregates formed by applying either heat stress or by pH-shift were investigated immediately after addition to human serum, and after 24 h. Unstressed and stressed IgG formulations were analyzed by fluorescence single particle tracking, confocal laser scanning microscopy and flow cytometry. Unstressed formulations remained free from subvisible aggregates in serum, whereas heat-stressed and pH-shift stressed formulations showed dissimilar aggregation behaviors. The aggregation profile of the heat-stressed formulation diluted in serum remained practically the same as the one diluted in buffer, even after the 24 h incubation period. The pH-shift stressed formulation had strikingly smaller and more numerous subvisible aggregates immediately after dilution in serum compared to buffer. These aggregates became noticeably larger in both diluents after 24 h, but in serum they appeared to be formed by other types of constituents than the labeled protein itself. These results show that subvisible therapeutic protein aggregates may undergo changes in number, type and size distribution upon contact with human serum. This emphasizes the importance of analytical strategies for monitoring aggregation in undiluted biological fluids

    Diphtheria toxoid and N-trimethyl chitosan layer-by-layer coated pH-sensitive microneedles induce potent immune responses upon dermal vaccination in mice

    Get PDF
    Dermal immunization using antigen-coated microneedle arrays is a promising vaccination strategy. However, reduction of microneedle sharpness and the available surface area for antigen coating is a limiting factor. To overcome these obstacles, a layer-by-layer coating approach can be applied onto pH-sensitive microneedles. Following this approach, pH-sensitive microneedle arrays (positively charged at coating pH 5.8 and nearly uncharged at pH 7.4) were alternatingly coated with negatively charged diphtheria toxoid (DT) and N-trimethyl chitosan (TMC), a cationic adjuvant. First, the optimal DT dose for intradermal immunization was determined in a dose-response study, which revealed that low-dose intradermal immunization was more efficient than subcutaneous immunization and that the EC50 dose of DT upon intradermal immunization is 3-fold lower, as compared to subcutaneous immunization. In a subsequent immunization study, microneedle arrays coated with an increasing number (2, 5, and 10) of DT/TMC bilayers resulted in step-wise increasing DT-specific immune responses. Dermal immunization with microneedle arrays coated with 10 bilayers of DT/TMC (corresponding with ± 0.6 μg DT delivered intradermally) resulted in similar DT-specific immune responses as subcutaneous immunization with 5 μg of DT adjuvanted with aluminum phosphate (8-fold dose reduction). Summarizing, the layer-by-layer coating approach onto pH-sensitive microneedles is a versatile method to precisely control the amount of coated and dermally-delivered antigen that is highly suitable for dermal immunization.Drug Delivery Technolog
    corecore