2,041 research outputs found
Design definition study of a NASA/Navy lift/cruise fan technology V/STOL airplane: Risk assessment addendum to the final report
An assessment of risk, in terms of delivery delays, cost overrun, and performance achievement, associated with the V/STOL technology airplane is presented. The risk is discussed in terms of weight, structure, aerodynamics, propulsion, mechanical drive, and flight controls. The analysis ensures that risks associated with the design and development of the airplane will be eliminated in the course of the program and a useful technology airplane that meets the predicted cost, schedule, and performance can be produced
A framework for the local information dynamics of distributed computation in complex systems
The nature of distributed computation has often been described in terms of
the component operations of universal computation: information storage,
transfer and modification. We review the first complete framework that
quantifies each of these individual information dynamics on a local scale
within a system, and describes the manner in which they interact to create
non-trivial computation where "the whole is greater than the sum of the parts".
We describe the application of the framework to cellular automata, a simple yet
powerful model of distributed computation. This is an important application,
because the framework is the first to provide quantitative evidence for several
important conjectures about distributed computation in cellular automata: that
blinkers embody information storage, particles are information transfer agents,
and particle collisions are information modification events. The framework is
also shown to contrast the computations conducted by several well-known
cellular automata, highlighting the importance of information coherence in
complex computation. The results reviewed here provide important quantitative
insights into the fundamental nature of distributed computation and the
dynamics of complex systems, as well as impetus for the framework to be applied
to the analysis and design of other systems.Comment: 44 pages, 8 figure
Effect of resonant magnetic perturbations on low collisionality discharges in MAST and a comparison with ASDEX Upgrade
Sustained ELM mitigation has been achieved on MAST and AUG using RMPs with a
range of toroidal mode numbers over a wide region of low to medium
collisionality discharges. The ELM energy loss and peak heat loads at the
divertor targets have been reduced. The ELM mitigation phase is typically
associated with a drop in plasma density and overall stored energy. In one
particular scenario on MAST, by carefully adjusting the fuelling it has been
possible to counteract the drop in density and to produce plasmas with
mitigated ELMs, reduced peak divertor heat flux and with minimal degradation in
pedestal height and confined energy. While the applied resonant magnetic
perturbation field can be a good indicator for the onset of ELM mitigation on
MAST and AUG there are some cases where this is not the case and which clearly
emphasise the need to take into account the plasma response to the applied
perturbations. The plasma response calculations show that the increase in ELM
frequency is correlated with the size of the edge peeling-tearing like response
of the plasma and the distortions of the plasma boundary in the X-point region.Comment: 31 pages, 28 figures. This is an author-created, un-copyedited
version of an article submitted for publication in Nuclear Fusion. IoP
Publishing Ltd is not responsible for any errors or omissions in this version
of the manuscript or any version derived from i
Upper Bound on the Products of Particle Interactions in Cellular Automata
Particle-like objects are observed to propagate and interact in many
spatially extended dynamical systems. For one of the simplest classes of such
systems, one-dimensional cellular automata, we establish a rigorous upper bound
on the number of distinct products that these interactions can generate. The
upper bound is controlled by the structural complexity of the interacting
particles---a quantity which is defined here and which measures the amount of
spatio-temporal information that a particle stores. Along the way we establish
a number of properties of domains and particles that follow from the
computational mechanics analysis of cellular automata; thereby elucidating why
that approach is of general utility. The upper bound is tested against several
relatively complex domain-particle cellular automata and found to be tight.Comment: 17 pages, 12 figures, 3 tables,
http://www.santafe.edu/projects/CompMech/papers/ub.html V2: References and
accompanying text modified, to comply with legal demands arising from
on-going intellectual property litigation among third parties. V3: Accepted
for publication in Physica D. References added and other small changes made
per referee suggestion
Strike point splitting induced by the application of magnetic perturbations on MAST
Divertor strike point splitting induced by resonant magnetic perturbations
(RMPs) has been observed on MAST for a variety of RMP configurations in a
plasma scenario with Ip=750kA where those configurations all have similar
resonant components. Complementary measurements have been obtained with
divertor Langmuir probes and an infrared camera. Clear splitting consistently
appears in this scenario only in the even configuration of the perturbation
coils, similarly to the density pump-out. These results present a challenge for
models of plasma response to RMPs.Comment: 9 pages, 4 figures, submitted to the proceedings of the 20th
Conference on Plasma Surface Interactions, to be published in the Journal of
Nuclear Material
Exact soliton solutions, shape changing collisions and partially coherent solitons in coupled nonlinear Schroedinger equations
We present the exact bright one-soliton and two-soliton solutions of the
integrable three coupled nonlinear Schroedinger equations (3-CNLS) by using the
Hirota method, and then obtain them for the general -coupled nonlinear
Schroedinger equations (N-CNLS). It is pointed out that the underlying solitons
undergo inelastic (shape changing) collisions due to intensity redistribution
among the modes. We also analyse the various possibilities and conditions for
such collisions to occur. Further, we report the significant fact that the
various partial coherent solitons (PCS) discussed in the literature are special
cases of the higher order bright soliton solutions of the N-CNLS equations.Comment: 4 pages, RevTex, 1 EPS figure To appear in Physical Review Letter
Erziehung und sozialer Wandel - Brennpunkte sozialpädagogischer Forschung, Theoriebildung und Praxis. Eine Einführung in die Thematik des Beihefts
Verallgemeinernd wird im Beitrag festgestellt: "Es geht zunächst um die Vergegenwärtigung der Wandlungen und Veränderungen in den sozialen Problemlagen und Lebensverhältnissen der Adressaten der Sozialpolitik, wie sie sich im Zusammenhang der dramatischen Veränderungen auf der gesellschaftlichen Ebene in der zweiten Hälfte der neunziger Jahre darstellen; deswegen ist von den Erziehungsverhältnissen im sozialen Wandel die Rede... Es geht um die Frage, wie Erziehungs- und Bildungsverhältnisse im Zeichen und im Kontext gesellschaftlicher Wandlungsprozesse sich verändern und welche Problemlagen daraus resultieren." (DIPF/Sch.
Cellular automaton supercolliders
Gliders in one-dimensional cellular automata are compact groups of
non-quiescent and non-ether patterns (ether represents a periodic background)
translating along automaton lattice. They are cellular-automaton analogous of
localizations or quasi-local collective excitations travelling in a spatially
extended non-linear medium. They can be considered as binary strings or symbols
travelling along a one-dimensional ring, interacting with each other and
changing their states, or symbolic values, as a result of interactions. We
analyse what types of interaction occur between gliders travelling on a
cellular automaton `cyclotron' and build a catalog of the most common
reactions. We demonstrate that collisions between gliders emulate the basic
types of interaction that occur between localizations in non-linear media:
fusion, elastic collision, and soliton-like collision. Computational outcomes
of a swarm of gliders circling on a one-dimensional torus are analysed via
implementation of cyclic tag systems
First Observation of a Stable Highly Dissipative Divertor Plasma Regime on the Wendelstein 7-X Stellarator
- …
