18,089 research outputs found
A hybrid asymptotic-modal analysis of the EM scattering by an open-ended S-shaped rectangular waveguide cavity
The electromagnetic fields (EM) backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with a planar interior termination is analyzed when it is illuminated by an external plane wave. The analysis is based on a self-consistent multiple scattering method which accounts for the multiple wave interactions between the open end and the interior termination. The scattering matrices which described the reflection and transmission coefficients of the waveguide modes reflected and transmitted at each junction between the different waveguide sections, as well at the scattering from the edges at the open end are found via asymptotic high frequency methods such as the geometrical and physical theories of diffraction used in conjunction with the equivalent current method. The numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet cavity redistributes the energy reflected from the interior termination in a way that is different from a straight inlet cavity
Probing Non-Abelian Statistics in nu=12/5 Quantum Hall State
The tunneling current and shot noise of the current between two Fractional
Quantum Hall (FQH) edges in the FQH state in electronic
Mach-Zehnder interferometer are studied. It is shown that the tunneling current
and shot noise can be used to probe the existence of parafermion
statistics in the FQH state. More specifically, the dependence of
the current on the Aharonov-Bohm flux in the Read-Rezayi state is asymmetric
under the change of the sign of the applied voltage. This property is absent in
the Abelian Laughlin states. Moreover the Fano factor can exceed 12.7 electron
charges in the FQH state . This number well exceeds the maximum
possible Fano factor in all Laughlin states and the Moore-Read
state which was shown previously to be and respectively.Comment: 10 pages, 6 figure
Localized structures in Kagome lattices
We investigate the existence and stability of gap vortices and multi-pole gap
solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete
case and in a continuum one with periodic external modulation. In particular,
predictions are made based on expansion around a simple and analytically
tractable anti-continuum (zero coupling) limit. These predictions are then
confirmed for a continuum model of an optically-induced Kagome lattice in a
photorefractive crystal obtained by a continuous transformation of a honeycomb
lattice
Geometric stabilization of extended S=2 vortices in two-dimensional photonic lattices: theoretical analysis, numerical computation and experimental results
In this work, we focus our studies on the subject of nonlinear discrete
self-trapping of S=2 (doubly-charged) vortices in two-dimensional photonic
lattices, including theoretical analysis, numerical computation and
experimental demonstration. We revisit earlier findings about S=2 vortices with
a discrete model, and find that S=2 vortices extended over eight lattice sites
can indeed be stable (or only weakly unstable) under certain conditions, not
only for the cubic nonlinearity previously used, but also for a saturable
nonlinearity more relevant to our experiment with a biased photorefractive
nonlinear crystal. We then use the discrete analysis as a guide towards
numerically identifying stable (and unstable) vortex solutions in a more
realistic continuum model with a periodic potential. Finally, we present our
experimental observation of such geometrically extended S=2 vortex solitons in
optically induced lattices under both self-focusing and self-defocusing
nonlinearities, and show clearly that the S=2 vortex singularities are
preserved during nonlinear propagation
Dynamic and Energetic Stabilization of Persistent Currents in Bose-Einstein Condensates
We study conditions under which vortices in a highly oblate harmonically
trapped Bose-Einstein condensate (BEC) can be stabilized due to pinning by a
blue-detuned Gaussian laser beam, with particular emphasis on the potentially
destabilizing effects of laser beam positioning within the BEC. Our approach
involves theoretical and numerical exploration of dynamically and energetically
stable pinning of vortices with winding number up to , in correspondence
with experimental observations. Stable pinning is quantified theoretically via
Bogoliubov-de Gennes excitation spectrum computations and confirmed via direct
numerical simulations for a range of conditions similar to those of
experimental observations. The theoretical and numerical results indicate that
the pinned winding number, or equivalently the winding number of the superfluid
current about the laser beam, decays as a laser beam of fixed intensity moves
away from the BEC center. Our theoretical analysis helps explain previous
experimental observations, and helps define limits of stable vortex pinning for
future experiments involving vortex manipulation by laser beams.Comment: 8 pages 5 figure
Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems
We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE
Averaging of Nonlinearity Management with Dissipation
Motivated by recent experiments in optics and atomic physics, we derive an
averaged nonlinear partial differential equation describing the dynamics of the
complex field in a nonlinear Schroedinger model in the presence of a periodic
nonlinearity and a periodically-varying dissipation coefficient. The
incorporation of dissipation is motivated by experimental considerations. We
test the numerical behavior of the derived averaged equation by comparing it to
the original nonautonomous model in a prototypical case scenario and observe
good agreement between the two
- …